Регулятор индуктивной нагрузки трансформатора. Регулировка мощности. Схема регулятора с обратной связью

Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности . В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей.


Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей , температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т.п. Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности. В основном, исполнительными элементами электронных регуляторов мощности переменного тока являются: тиристор, симистор и оптотиристор, управление последним осуществляется через встроенную в него оптопару, устраняющую гальваническую связь между схемой управления и питающей электросетью.

Регулирование мощности этими элементами основано на изменении фазы включения симистора в каждой полуволне синусоидального напряжения схемой управления. В результате этого на нагрузке форма напряжения представляет собой «обрезки» полуволн синусоиды с крутыми фронтами (рис.1). При этом форма напряжения на самом регуляторе мощности имеет вид, показанный на рис.2. Такая форма сигнала имеет широкий спектр гармоник, которые, распространяясь по электропроводке, могут создавать помехи электронным устройствам: телевизорам, компьютерам, звуковоспроизводящей аппаратуре и т.п. В связи с этим на сетевых входах таких регуляторов мощности устанавливаются RC- или RLC-фильтры.

Рис.1

На практике все выпускаемые сейчас электронные бытовые устройства и компьютеры имеют свои встроенные сетевые фильтры, благодаря которым помехи регуляторов мощности могут не влиять на работу указанных электронных устройств. Автором проверялись различные регуляторы мощности без собственных сетевых фильтров в комнатах, где установлены телевизор, ком-

Рис.2

пьютер, приемник FM и DVD-проигрыватель с УМЗЧ Воздействия помех на эту аппаратуру не наблюдалось, но это не значит, что фильтры вообще не нужны. Эти регуляторы мощности могут создавать помехи электронной аппаратуре соседей по подъезду. Практические исследования распространения помех по электропроводке в соседних комнатах с помощью осциллографа показали, что при регулировании мощности нагрузки до 2 кВт достаточно RC-фильтра, что подтверждается схемами промышленных изделий. Для регуляторов большей мощности необходимо после RC-фильтра подключить LC-фильтр,

Рис.3

Рис.4

Принципиальная схема сетевого фильтра промышленного регулятора мощности до 4 кВт типа РТ-4 УХЛ4.2 220В-1 Р30 показана на рис.3, монтаж регулятора - на рис.4. Каждая катушка содержит 90 витков провода ПЭВ-2 диаметром 1,5 мм, намотанного в два слоя на каркасе, внутри которого размещен ферритовый сердечник с проницаемостью Ф600 диаметром 8 мм. Индуктивность катушки равна 0,25 мГн. Регуляторы мощности без фильтров могут использоваться в гаражах, индивидуальных подсобных помещениях, дачах и т.п., то есть вдали от соседей. Если регулятор мощности является отдельным изделием и предназначен для подключения нагрузок разной мощности, пользователям важно знать, что при одном и том же положении ручки регулятора на разных нагрузках будет разное напряжение. По этой причине перед подключением нагрузки регулятор мощности необходимо устанавливать в нулевое положение. При необходимости контролировать напряжение на нагрузке можно отдельным или встроенным вольтметром.

В Интернете и электротехнических журналах приведено множество различных схем электронных регуляторов мощности нагрузки с практически одинаковыми функциями, но есть и другие схемные решения, например регуляторы, не создающие помех . Эти регуляторы выдают пачки синусоидальных токов, длительностью которых регулируется мощность в нагрузке. Схемы таких регуляторов относительно сложны и могут применяться в каких-то особых случаях. Применение подобных регуляторов в промышленности не встречалось. Подавляющее большинство регуляторов мощности построены по принципу фазового регулирования тока в нагрузке. Основное различие - схемы управления тиристорами и симисторами. Силовая часть представляет собой практически три варианта: тиристор в диагонали диодного моста, два встречно-параллельных тиристора и симистор. Схемы управления представляют собой различные варианты на транзисторах, микросхемах, динисторах, газоразрядных приборах, однопереходных транзисторах и т.п., часть которых приведена в [ 1-6]. Такие схемы содержат много деталей, относительно сложны в изготовлении и наладке.

Регуляторы на тиристорах

Самым простым и широко используемым регулятором мощности был регулятор на тиристоре, включенном в диагональ диодного моста и с простой схемой управления (рис.5) . Принцип работы этого регулятора очень простой пока конденсатор С2 заряжается через R2 и R4, тиристор заперт, при достижении на С2 напряжения отпирания тиристор открывается и пропускает ток в нагрузку, а С2 быстро разряжается через низкое

Рис.5 регулятор мощности на тиристоре

сопротивление открытого тиристора. При переходе синусоидального напряжения сети через ноль тиристор запирается и ждет нового повышения напряжения на С2 Чем больше времени заряжается С2, тем меньше времени тиристор находится в открытом состоянии и меньше ток в нагрузке. Чем меньше величина R4, тем быстрее заряжается С2 и больше ток пропускается в нагрузку. Достоинством этой схемы является то, что независимо от параметров исправного тиристора положительные и отрицательные импульсы тока в нагрузке всегда симметричны, а также наличие только одного тиристора, которые при их появлении были дефицитом. Недостатком является наличие четырех мощных диодов, что вместе с тиристором и охладителями существенно увеличивает габариты регулятора. Более компактными и в два раза более мощными являются регуляторы мощности на включенных встречно-параллельно тиристорах. На двух тиристорах КУ202Н с простой схемой управления получается регулятор мощности нагрузки до 4 кВт, которая длительно используется автором в калорифере повышенной мощности .

Принципиальная схема такого регулятора с сетевым фильтром показана на рис.6. Недостатком таких схем является асимметрия положительных и отрицательных импульсов тока в нагрузке при разбросе параметров тиристоров.

Рис.6

Асимметрия проявляется в начальной стадии открывания тиристоров. Для нагревательных приборов и электроинструмента с коллекторными двигателями эта асимметрия практической роли не играет, а осветительные приборы при уменьшении их яркости начинают мигать, так как импульсы какой-то полярности при этом вообще исчезают. Для устранения этого недостатка необходимо подбирать тиристоры с идентичными параметрами по току открывания и току удержания тиристоров от технологического источника постоянного тока на соответствующей нагрузке или путем подбора второго тиристора по отсутствию мигания лампы при минимальном накале спирали.

Одной из разновидностей тиристоров являются оптотиристоры, для управления которыми при встречнопараллельном включении может быть применен принцип управления схемы рис.5 с разделением положительных и отрицательных управляющих импульсов с помощью диодов или динисторов.

Практическая принципиальная схема такого регулятора мощности нагрузки до 5 кВт показана на рис.7. Этот регулятор используется автором для регулировки сварочного тока и режимов работы других мощных электроустройств. Регулятор мощности снабжен стрелочным индикатором напряжения на нагрузке, что повышает удобство при его эксплуатации. На рис.8 виден стрелочный индикатор (поз.1), на котором приклеены детали его выпрямителя и фильтра. Регулятор не имеет сетевого фильтра, так как применяется либо на даче, либо в гараже. При необходимости в нем можно применить фильтр, схема которого показана на рис.3.

Рис.7, схема регулятора мощности на оптотиристорах

Рис.8

Регуляторы на симисторах

Особый интерес представляют современные схемы регуляторов мощности на симисторах. Традиционные схемы управления симисторами содержат относительно много деталей, что наглядно видно на монтажной плате промышленного регулятора, показанной на рис.4. Например, микросхема КР1167КП1Б выдает на управляющий электрод симистора управляющие импульсы, показанные на осциллограмме (рис.9). Принципиальная схема регулятора мощности с применением данной микросхемы, распространенная среди запорожских электриков, показана на рис. 10. Этот регулятор мощности без теплоотвода для VS1 может работать на нагрузку до 200 Вт

Рис.9

(рис. 11 ), а с радиатором площадью не менее 100 см 2 - до 2 кВт. Оказалось, что эту схему без потери качества можно еще упростить. Упрощенная схема регулятора с этой микросхемой показана на рис. 12. При использовании исправных деталей эти схемы не требуют наладки.

Рис.10, схема регулятора мощности на симисторах

При изготовлении регуляторов для прикроватных светильников оказалось, что некоторые симисторы и микросхемы имеют дефекты, влияющие на симметричность импульсов и, соответственно, на равномерность регулировки свечения ламп, и даже приводящие к их

Рис.11

миганию. Перепайка деталей на печатной плате является неприятной процедурой и приводит к ее порче. В связи с этим была изготовлена проверочная плата по схеме рис. 10 (без R1 и С1) с панелькой для однорядной микросхемы, которая решила указанные проблемы. К контактам 1 -2 печатной платы подпаивают регу-

Рис. 12

лировочный резистор R5. В качестве нагрузки подключают лампу накаливания. Перед установкой деталей для проверки плату в обязательном порядке отключают от электросети.

На базе схемы рис.11 изготовлен портативный технологический регулятор для различных работ. Монтаж деталей показан на фото в начале статьи (нижняя крышка снята). Схема собрана в алюминиевом корпусе, который также служит охладителем симистора, изолированным от корпуса слюдяной прокладкой и изоляционной спецшайбой. После крепления симистора необходимо в обязательном порядке проверить сопротивление изоляции между его анодом и корпусом, которое должно быть не менее 1 МОм Данный регулятор при испытании в течение двух часов нормально работал без нагрева корпуса на нагрузку мощностью 500 Вт.

В заключение следует отметить, что регуляторы мощности нагрузки, собранные по схемам рис.6 и рис. 10, испытанные длительной эксплуатацией, наиболее оптимальны в части надежности, компактности, простоты деталей, монтажа и наладки. С небольшими разбросами параметров тиристоров и асимметричностью параметров симисторов эти регуляторы могут работать на все типы нагрузок соответствующей мощности, кроме осветительных приборов. Отклонение номиналов резисторов и конденсаторов от указанных в схемах на 10...20% на работу регуляторов не влияют. Приведенные схемы управления могут работать и с более мощными тиристорами и симисторами в регуляторах мощности нагрузок до 5 кВт. Регулятор мощности по схеме рис. 12 рекомендуют применять для осветительных приборов мощностью до 100 Вт без теплоотвода. Работа этого регулятора на другие типы нагрузок не испытывалась, но предположительно он не должен быть хуже регулятора, собранного по схеме рис. 10 .

А.Н. Журенков

Литература

1. Золотарев С. Регулятор мощности // Радио. -1989. - №11.

2. Карапетьянц В. Усовершенствование регулятора мощности // Радио. - 1986. -№11.

3. Леонтьев А., Лукаш С. Регулятор напряжения с фазоимпульсным управлением // Радио -1992. - №9.

4. Бирюков С. Двухканальный симисторный регулятор // Радио. - 2000. - №2.

5 . Зорин С. Регулятор мощности // Радио. -2000 . - № 8 .

6. Журенков А. Фен с электронным регулятором мощности // Электрик. - 2009. - №1-2.

7. Журенков А. Калорифер повышенной мощности // Электрик. - 2009. - №9.

Трансформаторы, так же как и электродвигатели, имеют стальной сердечник. В нем верхняя и нижняя полуволна напряжения должны быть обязательно симметричны. Именно с этой целью используются регуляторы. Тиристоры сами по себе занимаются сменой фазы. Использоваться они могут не только на трансформаторах, но и на лампах накаливания, а также на нагревателях.

Если рассматривать активное напряжение, то тут требуются схемы, которые способны справиться с большой нагрузкой для осуществления индуктивного процесса. Некоторые специалисты в цепях используют симисторы, однако они не подходят для трансформаторов с мощностью более 300 В. В данном случае проблема заключается в разбросе положительной и отрицательной полярностей. На сегодняшний день с высокой активной нагрузкой позволяют справиться выпрямительные мосты. Благодаря им управляющий импульс в конечном счете достигает тока удержания.

Схема простого регулятора

Схема простого регулятора включает в себя непосредственно тиристор запирающего типа и контроллер для управления предельным напряжением. Для стабилизации тока в начале цепи используются транзисторы. Перед контроллером в обязательном порядке применяются конденсаторы. Некоторые используют комбинированные аналоги, однако это спорный вопрос. В данном случае оценивается емкость конденсаторов, исходя из мощности трансформатора. Если говорить об отрицательной полярности, то катушки индуктивности устанавливаются только с первичной обмоткой. Соединение с микроконтроллером в схеме может происходить через усилитель.

Реально ли сделать регулятор самостоятельно?

Тиристорный регулятор напряжения своими руками можно сделать, придерживаясь стандартных схем. Если рассматривать высоковольтные модификации, то резисторы лучше всего использовать герметизированного типа. Предельное сопротивление они способны выдерживать на уровне 6 Ом. Как правило, вакуумные аналоги более стабильны в работе, но активные параметры у них занижены. Резисторы общего назначения в данном случае лучше вообще не рассматривать. Номинальное сопротивление они в среднем выдерживают только на уровне 2 Ом. В связи с этим у регулятора будут серьезные проблемы с преобразованием тока.

Для высокой мощности рассеивания применяются конденсаторы класса РР201. Они отличаются хорошей точностью, высокоомная проволока для них подходит идеально. В последнюю очередь подбирается микроконтроллер со схемой. Низкочастотные элементы в данном случае не рассматриваются. Одноканальные модуляторы следует использовать только на пару с усилителями. Устанавливаются они у первого, а также у второго резисторов.

Устройства постоянного напряжения

Тиристорные регуляторы постоянного напряжения хорошо подходят для импульсных цепей. Конденсаторы в них, как правило, используются только электролитического типа. Однако их вполне можно заменить твердотельными аналогами. Хорошая пропускная способность тока обеспечивается за счет выпрямительного моста. Для высокой точности регулятора применяются резисторы комбинированного типа. Сопротивление максимум они способны поддерживать на отметке в 12 Ом. Аноды в схеме присутствовать могут только алюминиевые. Проводимость у них довольно хорошая, нагрев конденсатора не происходит очень быстро.

Использование элементов вакуумного типа в устройствах вообще не оправданно. В этой ситуации тиристорные регуляторы напряжения постоянного тока ощутят существенное снижение частоты. Для настройки параметров устройства применяют микросхемы класса СР1145. Как правило, они рассчитаны на многоканальность и портов имеют как минимум четыре. Всего разъемов у них предусмотрено шесть. Интенсивность отказов в такой схеме можно сократить за счет использования предохранителей. К источнику питания их следует подключать только через резистор.

Регуляторы переменного напряжения

Тиристорный регулятор переменного напряжения выходную мощность в среднем имеет на уровне 320 В. Достигается это за счет быстрого протекания процесса индуктивности. Выпрямительные мосты в стандартной схеме применяются довольно редко. Тиристоры для регуляторов обычно берутся четырехэлектродные. Выходов у них предусмотрено только три. За счет высоких динамических характеристик предельное сопротивление они выдерживают на уровне 13 Ом.

Максимальное напряжение на выходе равняется 200 В. За счет высокой теплоотдачи усилители в схеме абсолютно не нужны. Управление тиристором осуществляется при помощи микроконтроллера, который соединяется с платой. Запираемые транзисторы устанавливаются перед конденсаторами. Также высокая проводимость обеспечивается за счет анодной цепи. Электрический сигнал в данном случае быстро передается от микроконтроллера на выпрямительный мост. Проблемы с отрицательной полярностью решаются за счет повышения предельной частоты до 55 Гц. Управление оптическим сигналом происходит при помощи электродов на выходе.

Модели для зарядки аккумуляторов

Тиристорный регулятор напряжения зарядки аккумулятора (схема показана ниже) отличается своей компактностью. Максимум сопротивление в цепи он способен выдерживать на уровне 3 Ом. При этом токовая нагрузка может составлять только 4 А. Все это говорит о слабых характеристиках таких регуляторов. Конденсаторы в системе часто используются комбинированного типа.

Емкость во многих случаях у них не превышает 60 пФ. Однако многое в данной ситуации зависит от их серии. Транзисторы в регуляторах используют маломощные. Это необходимо для того, чтобы показатель рассеивания не был таким большим. Баллистические транзисторы в данном случае подходят плохо. Связано это с тем, что ток они способны пропускать только в одном направлении. В результате напряжение на входе и выходе будет сильно отличаться.

Особенности регуляторов для первички трансформаторов

Тиристорный регулятор напряжения для первички трансформатора резисторы использует эммитерного типа. Благодаря этому показатель проводимости довольно хороший. В целом такие регуляторы отличаются своей стабильностью. Стабилизаторы на них устанавливаются самые обычные. Для управления мощностью используются микроконтроллеры класса ИР22. Коэффициент усиления тока в данном случае будет высоким. Транзисторы одной полярности для регуляторов указанного типа не походят. Также специалисты советуют избегать изолированных затворов для соединения элементов. В этом случае динамические характеристики регулятора значительно снизятся. Связано это с тем, что на выходе из микроконтроллера повысится отрицательное сопротивление.

Регулятор на тиристоре КУ 202

Тиристорный регулятор напряжения КУ 202 оснащается двухканальным микроконтроллером. Всего разъемов у него предусмотрено три. Диодные мосты в стандартной схеме используются довольно редко. В некоторых случаях можно встретить различные стабилитроны. Применяются они исключительно для увеличения предельной выходной мощности. Также они способны стабилизировать рабочую частоту в регуляторах. Конденсаторы в таких устройствах целесообразнее использовать комбинированного типа. За счет этого можно значительно понизить коэффициент рассеивания. Также следует учитывать пропускную способность тиристоров. Для выходной анодной цепи лучше всего подходят биполярные резисторы.

Модификация с тиристором КУ 202Н

Тиристорный регулятор напряжения КУ 202Н способен довольно быстро передавать сигнал. Таким образом, управлять предельным током можно с большой скоростью. Теплоотдача в данном случае будет невысокой. Максимум нагрузку устройство должно держать на отметке в 5 А. Все это позволит беспрепятственно справляться с помехами различной амплитуды. Также не следует забывать про номинальное сопротивление на входе цепи. С использованием данных тиристоров в регуляторах процесс индукции осуществляется при выключенных запирающих механизмах.

Схема регулятора КУ 201л

Тиристорный регулятор напряжения КУ 201л включает биполярные транзисторы, а также многоканальный микроконтроллер. Конденсаторы в системе используются только комбинированного типа. Электролитические полупроводники в регуляторах встречаются довольно редко. В конечном счете это сильно отражается на проводимости катода.

Твердотельные резисторы необходимы только для стабилизации тока в начале цепи. Резисторы с диэлектриками могут использоваться на пару с выпрямительными мостами. В целом указанные тиристоры способны похвастаться высокой точностью. Однако они довольно чувствительные и рабочую температуру держат на низком уровне. За счет этого интенсивность отказов может быть фатальной.

Регулятор с тиристором КУ 201а

Конденсаторы предусматривает тиристорный регулятор напряжения подстроечного типа. Номинальная емкость у них находится на уровне 5 пФ. В свою очередь, предельное сопротивление они выдерживают ровно 30 Ом. Высокая проводимость тока обеспечивается за счет интересного построения транзисторов. Располагаются они по обе стороны от источника питания. При этом важно отметить, что ток проходит через резисторы во всех направлениях. В качестве замыкающего механизма представлен микроконтроллер серии ППР233. Периодическую подстройку системы с его помощью делать можно.

Параметры устройства с тиристором КУ 101г

Для подключения к высоковольтным трансформаторам используются указанные тиристорные регуляторы напряжения. Схемы их предполагают использование конденсаторов с предельной емкостью на уровне 50 пФ. Подстрочные аналоги не способны похвастаться такими показателями. Выпрямительные мосты в системе играют важную роль.

Для стабилизации напряжения дополнительно могут использоваться биполярные транзисторы. Микроконтроллеры в устройствах предельное сопротивление должны выдерживать на уровне 30 Ом. Непосредственно индукционный процесс протекает довольно быстро. Использовать усилители в регуляторах допустимо. Во многом это поможет повысить порог проводимости. Чувствительность таких регуляторов оставляет желать лучшего. Предельная температура тиристоров доходит до 40 градусов. В связи с этим они нуждаются в вентиляторах для охлаждения системы.

Свойства регулятора с тиристором КУ 104а

С трансформаторами, мощность которых превышает 400 В, работают указанные тиристорные регуляторы напряжения. Схемы расположения основных элементов у них могут различаться. В данном случае предельная частота должна находиться на уровне 60 Гц. Все это в конечном счете оказывает огромную нагрузку на транзисторы. Тут они используются закрытого типа.

За счет этого производительность таких устройств значительно повышается. На выходе рабочее напряжение в среднем находится на уровне 250 В. Использовать керамические конденсаторы в данном случае нецелесообразно. Также большой вопрос у специалистов вызывает применение подстроечных механизмов для регулировки уровня тока.

Регулятор мощности симисторный

Регулятор мощности симисторный предназначен для регулировки мощности нагревательных и осветительных приборов мощность которых не првышает 1000 Вт.

Технические характеристики :
Рабочее напряжение; 160-300 В
Диапазон регулировки мащности 10-90%
Ток нагрузки: до 5 А

Устройство состоит из симистора и времязадающей цепочки. Принцип регулировки мощности заключается в изменения продолжительности времени открытого состояния симистора (рисунок 1). Чем большее время симистор открыт, тем большая мощность отдается в нагрузку. А так как симистор выключается в момент когда ток протекающий через симистор равен нулю, то задавать продолжительность открытия симистора будем в пределах половины периода.

В начале положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, R2. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Динистор замкнет цепь Dl, Cl, D3 и откроет симистор U1. Симистор остается открытым до конца полупериода. Время зарядки конденсатора задается параметрами цепочки R1, R2, С1. Резистором R2 задаем время зарядки конденсатора, а соответственно и момент открытия динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.


Используемые радиоэлементы:
R1 - 3.9...10K
R2 - 500K
C1 - 0.22мкФ
D1 - 1N4148
D2 - светодиод
D3 - DB4
U1 - BT06-600
P1,P2 клемники
R3 - 22K 2Вт
C2 - 0.22мкФ 400В


Правильно собранная схема наладки не требует.

При использовании нагрузки мощностью более 300 Вт, симистор необходимо установить на радиатор с площадью поверхности не мене 20 см 2
На переменный резистор необходимо установить ручку из изолированного материала.

При дополнении схемы всего двумя элементами (на схеме обозначены красным цветом)появляется возможность управления индуктивной нагрузкой. Т.е. можно на выход симисторного регулятора мощности подключить трансформатор.

ВНИМАНИЕ! Устройство гальванически не развязано от сети! Запрещается прикасаться к элементам включенной схемы!

Смотреть обучающее видео на тему "Симисторный регулятор мощности"

Небольшой полупроводниковый прибор «симистор», или симметричный тринистор (тиристор), за своим сложным названием скрывает достаточно простой принцип действия, сравнимый с работой двери в метро. Обыкновенные тиристоры можно сравнить с простой дверью: если ее закрыть, прохода не будет. И работает такая дверь в одном направлении. Симисторы же работают в обоих направлениях. Именно поэтому сравнение с дверью в метрополитене: куда ее не толкают, она отрывается и пропускает поток пассажиров в любом направлении.

Двухстороннее действие симистора обусловлено его особенной структурой. Его катод и анод способны, в некотором смысле, меняться местами и выполнять функции друг друга, пропуская ток в обратном направлении. Это возможно благодаря тому, что симистор имеет 5 полупроводниковых слоев и управляющий электрод.

Для простоты понимания физических процессов, протекающих в симисторе можно представить его в виде двух встречно-параллельно подключенных тиристоров.

Симисторы применяются в различных схемах в качестве бесконтактных ключей и имеют ряд преимуществ перед контакторами, реле, пускателями и подобными электромеханическими элементами:

  • симисторы долговечны, практически неубиваемы;
  • там где есть электромеханика, есть ограничения по частоте коммутаций, износ, и соответствующие риски и проблемы, а с полупроводниками таких нюансов не возникает;
  • полное отсутствие искрообразования и связанных с ним рисков;
  • возможность проводить коммутацию в моменты нулевого сетевого тока, что снижает помехи и влияние на точность работы схем.

Схема простого регулятора мощности на симисторе

Чаще всего симисторы применяются в схемах регулирования мощности. Один из самых простых и распространенных регуляторов мощности на симисторе КУ208Г показан ниже.

Как видно на рисунке, силовая цепь схемы оснащена симистором типа КУ208, а цепь его управления включает лишь один элемент – транзистор типа П416А. Наладка работы устройства сводится в итоге к подбору номинала резистора R1 и проходит в такой последовательности:

  • движок резистора R4 установить в нижнее положение;
  • вместо резистора R1 установить переменный резистор с сопротивлением 150 Ом;
  • установить переменный резистор в максимальное положение;
  • подключить к нагрузке вольтметр переменного тока;
  • подключить устройство к сети.

Для того, чтобы правильно подключить его должна соответствовать предварительно выбранному месту установки и количеству подключаемых устройств. Очень важно при этом проверить корректность работы осветительных приборов и отрегулировать соответствующие параметры датчика.

Данное оборудование, благодаря своим технологичным качествам, набирает все большую популярность при обустройстве освещения в домашних условиях. Прочитав , можно разобраться в принципе работы различных датчиков движения, что поможет в дальнейшем выборе подходящего прибора для своего дома.

Далее необходимо вращать движок резистора R1 и отслеживать напряжение на нагрузке: необходимо добиться, чтобы оно перестало увеличиваться. В найденном положении необходимо измерить сопротивление переменного резистора, и соответственно будет установлено необходимо сопротивление резистора R1. Именно с таким номиналом необходимо будет установить постоянный резистор R1 в схему на место переменного образца.

Обратная связь в симисторных схемах регулирования

Для управления мощностью (температурой) нагревательных элементов различных приборов, скоростями вращения двигателей и т.д. в последнее время, несмотря на большую стоимость, чем электромеханика, применяется регулятор мощности на симисторе. Необходимость использования дополнительного радиатора для такой схемы – это небольшая плата взамен отсутствию рисков искрения, долгому сроку безотказной работы, стабильности выдаваемых параметров.

Такая схема регулирования распространена в приборах типа паяльников, электродрелей и т.д.

Ниже приведен пример еще одной схемы регулирования мощности на симисторе. Это схема для регулирования скорости двигателя промышленной швейной машины.


Схема собрана на симисторе VS1, выпрямительных вентилях VD1 и VD2, и переменном резисторе R3 в цепи управления. Особенностью и ключевой отличительной чертой такой схемы является обратная связь. Симистор, пропускающий ток в обоих направлениях – это лучшее решение для схем регулирования, где необходимо наличие такой обратной связи.

При выборе типа защитных устройств в первую очередь учитывают их технические возможности монтажа в совокупности индивидуальных предпочтений. Это и является определяющим в решении вопроса: ? Только изучив особенности их работы, можно достичь безопасного функционирования бытовой электросети.

Применяя устройства защитного отключения в домашних условиях, необходимо знать особенности различных его видов — чтобы правильно , а также изучить схемы установки — чтобы верно .

Сравнивая с устаревшими коммутационными технологиями, можно обозначить еще одно явное преимущество схем регулирования мощности на симисторах – это возможность обеспечения качественной обратной связи и соответственно корректировки работы по обратной связи.

Особенности и преимущества схемы:

  1. В данном случае реализована обратная связь по нагрузке , что позволяет усиливать обороты двигателя и обеспечивать плавную бесперебойную работу машины в случае возрастания нагрузочных усилий. При этом все операции выполняются схемой автоматически. Не возникает искрений или перегрева. Как видно из рисунка, теплоотвода не предусмотрено.
  2. Данная схема – это регулирование активной мощности приборов . Не рекомендуется применение таких схем в системах регулирования интенсивности освещения. По ряду причин, осветительные приборы будут сильно мигать.

  3. Коммутация симистора в данной схеме происходит строго в моменты перехода через «0» сетевого напряжения, поэтому можно заявлять о полном отсутствии помех со стороны регулятора.
  4. Приводится в действие, то есть включается симистор от поступающего на управляющий электрод положительного импульса при положительном напряжении на аноде, либо от отрицательного импульса при отрицательном положении на катоде. Катод и анод, учитывая особенности двунаправленной работы симистора тут условные. в зависимости от работы в разных направлениях они будут меняться функциями.
  5. В роли источника импульсов для управления симистором может быть применен двунаправленный динистор . Либо, из соображений удешевления схемы, можно подключить во встречно-параллельном направлении пару обыкновенных динисторов. Для обеспечения большей ширины диапазона регулирования малых напряжений оптимальным выбором станут динисторы типа КНР102А. Еще один вариант ключевого элемента – лавинный транзистор.
  6. Регулирования активной и реактивной мощности имеют некоторые отличительные особенности. Управление индуктивной нагрузкой требует включения в схему RC-цепочки (параллельно симистору). Это позволит сдерживать скорость увеличения напряжения на аноде симистора.

Видео о симисторном регуляторе мощности

В электротехнике довольно часто приходиться встречаться с задачами регулирования переменного напряжения, тока или мощности. Например, для регулирования частоты вращения вала коллекторного двигателя необходимо регулировать напряжение на его зажимах, для управления температурой внутри сушильной камеры нужно регулировать мощность, выделяемую в нагревательных элементах, для достижения плавного безударного пуска асинхронного двигателя - ограничивать его пусковой ток. Распространенным решением является устройство, называемое тиристорный регулятор.


Устройство и принцип действия однофазного тиристорного регулятора напряжения


Тиристорные регуляторы бывают однофазные и трехфазные соответственно для однофазных и трехфазных сетей и нагрузок. В этой статье мы рассмотрим простейший однофазный тиристорный регулятор, - в других статьях. Итак, на рисунке 1 ниже представлен однофазный тиристорный регулятор напряжения:

Рис.1 Простой однофазный тиристорный регулятор с активной нагрузкой

Сам тиристорный регулятор обведен голубыми линиями и включает в себя тиристоры VS1-VS2 и систему импульсно-фазового управления (далее - СИФУ). Тиристоры VS1-VS2 - полупроводниковые приборы, имеющие свойство быть закрытыми для протекания тока в нормальном состоянии и быть открытыми для протекания тока одной полярности при подаче напряжения управления на его управляющий электрод. Поэтому для работы в сетях переменного тока необходимо два тиристора, включенных разнонаправлено - один для протекания положительной полуволны тока, второй - отрицательной полуволны. Такое включение тиристоров называется встречно-параллельным.

Однофазный тиристорный регулятор с активной нагрузкой

Работает тиристорный регулятор так. В начальный момент времени подается напряжение L-N (фаза и ноль в нашем примере), при этом импульсы управляющего напряжения на тиристоры не подаются, тиристоры закрыты, ток в нагрузке Rн отсутствует. После получения команды на запуск СИФУ начинает формировать импульсы управления по определенному алгоритму (см.рис. 2).



Рис.2 Диаграмма напряжения и тока в активной нагрузке

Сначала система управления синхронизируется с сетью, то есть определяет момент времени, в который напряжение сети L-N равно нулю. Эта точка называется моментом перехода через ноль (в иностранной литературе - Zero Cross). Далее отсчитывается определенное время T1 от момента перехода через ноль и подается импульс управления на тиристор VS1. При этом тиристор VS1 открывается и через нагрузку протекает ток по пути L-VS1-Rн-N. При достижении следующего перехода через ноль тиристор автоматически закрывается, так как не может проводить ток в обратном направлении. Далее начинается отрицательный полупериод сетевого напряжения. СИФУ снова отсчитывает время Т1 относительно уже нового момента перехода напряжения через ноль и формирует второй импульс управления уже тиристором VS2, который открывается, и через нагрузку протекает ток по пути N-Rн-VS2-L. Такой способ регулирования напряжения называется фазо-импульсный .

Время Т1 называется временем задержки отпирания тиристоров, время Т2 - время проводимости тиристоров. Изменяя время задержки отпирания T1 можно регулировать величину выходного напряжения от нуля (импульсы не подаются, тиристоры закрыты) до полного сетевого, если импульсы подаются сразу в момент перехода через ноль. Время задержки отпирания T1 варьируется в пределах 0..10 мс (10 мс - это длительность одного полупериода напряжения стандартной сети 50 Гц). Также иногда говорят о временах T1 и Т2, но оперируют при этом не временем, а электрическими градусами. Один полупериод составляет 180 эл.градусов.

Что представляет выходное напряжение тиристорного регулятора? Как видно из рисунка 2, оно напоминает « обрезки» синусоиды. Причем чем больше время Т1, тем меньше этот „обрезок“ напоминает синусоиду. Из этого следует важный практический вывод - при фазо-импульсном регулировании выходного напряжение несинусоидально. Это обуславливает ограничение области применения — тиристорный регулятор не может быть применен для нагрузок, не допускающих питание несинусоидальным напряжением и током. Так же на рисунке 2 красным цветом показана диаграмма тока в нагрузке. Поскольку нагрузка чисто активная, то форма тока повторяет форму напряжения в соответствии с законом Ома I=U/R.

Случай активной нагрузки является наиболее распространенным. Одно из самых частых применений тиристорного регулятора - регулирование напряжения в ТЭНах. Регулируя напряжение, изменяется ток и выделяемая в нагрузке мощность. Поэтому иногда такой регулятор также называют тиристорным регулятором мощности . Это верно, но все-таки более верное название - тиристорный регулятор напряжения, так как именно напряжение регулируется в первую очередь, а ток и мощность - это величины уже производные.


Регулирование напряжения и тока в активно-индуктивной нагрузке


Мы рассмотрели простейший случай активной нагрузки. Зададимся вопросом, что изменится, если нагрузка будет иметь помимо активной еще и индуктивную составляющую? Например, активное сопротивление подключено через понижающий трансформатор (рис.3). Это кстати очень распространенный случай.


Рис.3 Тиристорный регулятор работает на RL-нагрузку

Посмотрим внимательно на рисунок 2 из случая чисто активной нагрузки. На нем видно, что сразу после включения тиристора ток в нагрузке почти мгновенно нарастает от нуля до своего предельного значения, обусловленного текущим значением напряжения и сопротивления нагрузки. Из курса электротехники известно, что индуктивность препятствует такому скачкообразному нарастанию тока, поэтому диаграмма напряжения и тока будет иметь несколько отличный характер:


Рис.4 Диаграмма напряжения и тока для RL-нагрузки

После включения тиристора ток в нагрузке нарастает постепенно, благодаря чему кривая тока сглаживается. Чем больше индуктивность, тем более сглаженная кривая тока. Что это дает практически?

— Наличие достаточной индуктивности позволяет приблизить форму тока к синусоидальной, то есть индуктивность выполняет роль синус фильтра. В данном случае это наличие индуктивности обусловлено свойствами трансформатора, но часто индуктивность вводят преднамеренно в виде дросселя.

— Наличие индуктивности уменьшает величину помех, распространяемых тиристорным регулятором по проводам и в радиоэфир. Резкое, почти мгновенное (в течение нескольких микросекунд) нарастание тока вызывает помехи которые могут препятствовать нормальной работе другого оборудования. А если питающая сеть « слабая», то бывает и совсем курьез - тиристорный регулятор может „глушить“ сам себя своими же помехами.

— У тиристоров есть важный параметр - величина критической скорости нарастания тока di/dt. Например, для тиристорного модуля SKKT162 эта величина составляет 200 А/мкс. Превышение этой величины опасно, так как может привести к выходу тиристору из строя. Так вот наличие индуктивности дает возможность тиристору остаться в области безопасной работы, гарантированно не превысив предельную величину di/dt. Если же это условие не выполняется, то может наблюдаться интересное явление - выход тиристоров из строя, притом что ток тиристоров не превышает их номинального значения. Например, тот же SKKT162 может выходить из строя при токе в 100 А, хотя он может нормально работать до 200 А. Причиной будет превышение именно скорости нарастания тока di/dt.

Кстати, надо оговориться, что индуктивность в сети есть всегда, даже если нагрузка носит чисто активный характер. Ее наличие обусловлено, во-первых, индуктивностью обмоток питающей трансформаторной подстанции, во вторых, собственной индуктивностью проводов и кабелей и, в третьих, индуктивностью петли, образованной питающими и нагрузочными проводами и кабелями. И чаще всего этой индуктивности хватает, чтобы обеспечить условие непревышения di/dt критического значения, поэтому производители обычно не ставят в тиристорные регуляторы , предлагая их как опцию тем, кого беспокоит « чистота» сети и электромагнитная совместимость устройств к ней подключенных.

Также обратим внимание диаграмму напряжения на рисунке 4. На ней также видно, что после перехода через ноль на нагрузке появляется небольшой выброс напряжения обратной полярности. Причина его возникновения - затягивание спадания тока в нагрузке индуктивностью, благодаря чему тиристор продолжает быть открытым даже при отрицательной полуволне напряжения. Запирание тиристора происходит при спадания тока до нуля с некоторым запаздыванием относительно момента перехода через ноль.


Случай индуктивной нагрузки


Что будет если индуктивная составляющая много больше составляющей активной? Тогда можно говорить о случае чисто индуктивной нагрузки. Например, такой случай можно получить, отключив нагрузку с выхода трансформатора из предыдущего примера:


Рисунок 5 Тиристор регулятор с индуктивной нагрузкой

Трансформатор, работающий в режиме холостого хода - почти идеальная индуктивная нагрузка. В этом случае из-за большой индуктивности момент запирания тиристоров смещается ближе к середине полупериода, а форма кривой тока максимально сглаживается до почти синусоидальной формы:



Рисунок 6 Диаграммы тока и напряжение для случая индуктивной нагрузки

При этом напряжение на нагрузке почти равно полному сетевому, хотя время задержки отпирания составляет всего половину полупериода (90 эл.градусов) То есть при большой индуктивности можно говорить о смещении регулировочной характеристики. При активной нагрузке максимальное выходное напряжение будет при угле задержки отпирания 0 эл.градусов, то есть в момент перехода через ноль. При индуктивной нагрузке максимум напряжения можно получить при угле задержки отпирания 90 эл.градусов, то есть при отпирании тиристора в момент максимума сетевого напряжения. Соответственно, случаю активно-индуктивной нагрузки максимум выходного напряжения соответствует углу задержки отпирания в промежуточном диапазоне 0..90 эл.градусов.