Компактный многофункциональный прибор - измеритель L, C, ESR, пробник-генератор сигналов. Конструкция простого измерителя LC. Вот схема измерителя LC

Буквой C. Вот отсюда и пошло название прибора. Или иными словами, LC-метр – это прибор для измерения значений индуктивности и емкости.

На фото он выглядит примерно вот так:

LC-метр на вид напоминает . Он также имеет два щупа для измерения значений катушки индуктивности и емкости. Выводы конденсаторов можно пихать либо в отверстия для конденсаторов, там где написано Cx, а можно и напрямую к щупам. Проще и быстрее все-таки подсоединять к щупам. Индуктивность и емкость измеряются очень просто, выставляем предел измерения, покрутив крутилку, и смотрим обозначение на дисплее LC-метра . Как говорится, даже маленький ребенок без труда освоит эту “игрушку”.

Как измерить емкость LC-метром

Вот у нас четыре испытуемых конденсатора. Трое из них – неполярные, а один – полярный (черный с серой полосой)


Погнали


Давайте разберемся с обозначениями на конденсаторе. 0,022 мкФ – это его емкость, то есть 0,022 микрофарад. Далее +-5% – это его погрешность. То есть измеряемое значение может быть на плюс или минус 5% больше или меньше. Если больше или меньше 5 % – значит конденсатор у нас плохой, и его желательно не использовать. Пять процентов от 0,022 – это 0,001. Следовательно, конденсатор можно считать вполне рабочим, если его измеряемая емкость будет находится в диапазоне от 0,021 до 0,023. У нас значение 0,025. Если даже учесть погрешность измерения прибора – это не есть хорошо. Выкидываем его куда подальше. Ах да, обратите внимание на вольты, которые пишутся после процентов. Там написано 200 Вольт – это значит, что он рассчитан на напряжение до 200 Вольт. Если у него в схеме будет на выводах напряжение больше 200 Вольт, то он, скорее всего, выйдет из строя.

Если, например, на конденсаторе указано 220 В, то это – максимальное значение напряжения . С учётом того, что в сетях переменного тока указываются , то такой конденсатор не подойдёт для применения при напряжении сети 220 В, так как максимальное значение напряжения в этой сети = 220 В х 1,4 (то есть корень из 2) = 310 В. Конденсатор надо выбрать такой, чтобы он был рассчитан на напряжение намного превышающее 310 Вольт.

Следующий советский конденсатор


0,47 микрофарад. Погрешность +-10 %. Это значит 0,047 в ту и другую сторону. Его можно считать нормальным в диапазоне 0,423-0,517микроФарад. На LC-метре 0,489 – следовательно, он вполне работоспособный.

Следующий импортный конденсатор


На нем написано,22 – это значит 0,22 микрофарад. 160 – это предел напряжения. Вполне нормальный конденсатор.

И следующий электролитический или, как его называют радиолюбители, электролит. 2,2 микрофарада на 50 Вольт.



Все ОК!

Как измерить индуктивность LC-метром

Давайте замеряем индуктивность катушки индуктивности . Берем катушку и цепляемся к ее выводам. 0,029 миллигенри или 29 микрогенри.


Таким же образом можно проверить другие катушки индуктивности.

Где купить LC-метр

В настоящее время прогресс дошел до того, что можно купить универсальный R/L/C/Transistor-metr , который умеет замерять почти все параметры радиоэлектронных компонентов


Ну для эстетов все таки есть нормальные LC-метры, которые в один клик можно приобрести с Китая в интернет-магазине Алиэкспресс;-)

Вот страничка на LC-метры.

Вывод

Катушки индуктивности и конденсаторы – незаменимая вещь в электронике и электротехнике. Очень важно знать их параметры, потому как малейшее отклонение параметра от значения написанного на них может сильно изменить работу схемы, особенно это касается приемопередающей аппаратуры. Измеряйте, измеряйте и еще раз измеряйте!

Андрей Барышев, г. Выборг

Этот прибор можно собрать в небольшом корпусе, например от китайского цифрового тестера. Он позволяет измерять емкости от 10 пикофарад до 1 микрофарады, индуктивности от 100 мкГн до 1 Гн, эквивалентное последовательное сопротивление (ESR) электролитических конденсаторов, выдает пять фиксированных частот (100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц) с амплитудой, регулируемой от 0 до 4…5 В. Кроме того, с его помощью можно проверить катушки индуктивности на отсутствие короткозамкнутых витков и измерить эквивалентное последовательное сопротивление (ESR) конденсаторов, не выпаивая их из плат, что позволяет за считанные минуты проверить, например, конденсаторы импульсного блока питания или телевизора, где именно показатель ESR имеет определяющее значение.

Схема прибора приведена на Рисунке 1.

Рисунок 1.

В основу работы прибора заложен принцип измерения постоянной составляющей сигнала генератора. На измерительную головку поступает постоянное напряжение, зависящее от величины измеряемой индуктивности или емкости. Чем больше номинал измеряемого элемента, тем на больший угол отклонится стрелка.

Широкополосный перестраиваемый генератор собран на цифровой микросхеме DD1, содержащей четыре логических элемента И-НЕ (можно ИЛИ-НЕ). В качестве такой микросхемы применимы, например, К561ЛА7 , К564ЛА7, К176ЛА7 (или с элементами ИЛИ-НЕ, например, К561ЛЕ5), питающее напряжение которых лежит в пределах 5..9 В. Переключением конденсаторов С1 - С5 задается частота генератора и предел измерения номинала емкости или индуктивности. Эти конденсаторы должны быть бумажными или, что лучше, металлопленочными (К71, К73, К77, К78). Далее через электронный ключ на транзисторе VТ1 сигнал генератора поступает на переключатель вида измерений S2 - «L/C» или «ЕSR». Переключателем S3 выбирается режим измерения индуктивности или емкости, также в режиме измерения емкости можно снимать с гнезда «F» пять вышеуказанных фиксированных частот, а резистором P2 регулировать выходное напряжение сигнала от 0 до 4 … 5 В.

При показанном на схеме положении переключателей S1 и S2 прибор работает в режиме измерения индуктивности.

На транзисторе VТ2 собран параметрический стабилизатор напряжения, что необходимо для стабильности генерируемой частоты и, следовательно, точности измерений. Выходное напряжение стабилизатора определяется типом стабилитрона VD1 и может лежать в пределах от 4.5 до 7.5 В (стабилитроны типа КС147, КС156, КС162, КС168, Д814А или другие с теми же напряжениями стабилизации). Для лучшей стабилизации напряжения и, соответственно, большей точности измерений желательно использовать стабилитроны типа КС с напряжением, близким к 6 В (КС156, КС162), так как они обладают лучшей термостабильностью параметров.

При измерениях конденсаторы подключаются к гнездам «Сх» и «Общ. Сх/Lx», индуктивности, соответственно, к «Lx» и «Общ. Cx/Lx». Гнездо «Lx» является также общим гнездом (GND) для генератора фиксированных частот и для измерения ESR электролитических конденсаторов. В качестве этих гнезд можно использовать уже установленные в корпусе тестера (если для данного прибора будет использоваться такой корпус). Нужно будет только добавить гнездо выхода генератора «F» аналогичного типа. В качестве переключателей S1, S2 и S3 можно применить любые подходящие на нужное количество контактов, например широко распространенные в свое время П2К или аналогичные импортные, а для переключения частоты генератора (коммутация конденсаторов С1 - С5) удобно использовать малогабаритные переключатели галетного типа (пример такого переключателя показан на Рисунке 2).

Диоды D1, D2 и D3 - германиевые, типа Д2, Д9, Д18, Д310, Д311, ГД507. В качестве измерительного прибора можно применить микроамперметр, например, стрелочный индикатор уровня записи от старого магнитофона или измерительную головку от небольшого стрелочного тестера.

Настройка измерителя С и L производится при помощи частотомера и вольтметра (можно использовать любой программный частотомер в компьютере). Переключатель S3 ставится в положение «С», а диапазон измерений (S1) - «1Гн/1мФ/100Гц». Частотомер подключают к гнездам «F» и «GND», и регулировкой резистора P1 6.8 кОм выставляется частота 100 Гц. Далее диапазон измерений переключается в положения 1 кГц, 10 кГц, 100 кГц, 1 МГц и подбором соответствующих конденсаторов С1 - С5 выставляются эти частоты. От точности подбора конденсаторов будет в дальнейшем зависеть и точность измерений прибора. При наличии осциллографа будет полезно посмотреть форму сигнала генератора на коллекторе транзистора VТ1. Подбором резистора R2 можно добиться формы сигнала, близкой к меандру на всех диапазонах измерений. После этого снова следует включить диапазон«1Гн/1мФ/100Гц», а к гнездам «Сх» подключить образцовый конденсатор емкостью 1 мФ. Подстроечным резистором VR2 следует установить отклонение стрелки прибора в конец шкалы. Далее подключаем емкости 0.1, 0.2, 0.3 … 0.9 мкФ и ставим на шкале прибора соответствующие метки (такие емкости можно составить из параллельно включенных конденсаторов номиналом по 0.1 мФ). Затем аналогичным образом подключаем к гнездам «Lx» образцовую катушку индуктивности 1 Гн и подстроечным резистором VR1 также выставляем стрелку прибора в конец шкалы. Надо заметить, что с наличием нужных для калибровки индуктивностей у меня лично дело обстоит сложнее, чем с конденсаторами, поэтому за несколько лет благополучного пользования прибором этот режим измерений так и не отградуирован (что можно видеть на фото). Но даже при не совсем точной калибровке шкалы прибор позволяет, тем не менее, с довольно высокой точностью подбирать парные элементы с одинаковыми или очень близкими номиналами.

При переключении в режим измерения «ESR» (переключатель S2) сигнал генератора поступает на обмотку трансформатора Tr1 через подстроечный резистор VR3. При этом также происходит перекоммутация измерительной головки. Частота, при которой измеряется эквивалентное последовательное сопротивление электролитических конденсаторов, составляет 100 кГц. Поэтому следует выставить соответствующий диапазон измерений («1мГ/1000пФ/100кГц/ESR») и поставить переключатель S3 в режим измерения «С».

Эта часть прибора в особой настройке не нуждается, следует просто выставить стрелку прибора в конец шкалы подстроечным резистором VR3 при разомкнутых входных контактах «ESR». Для градуировки используем резисторы 0.5, 2, 5 и 10 Ом. Подключаем их поочередно к контактам «ESR» и делаем на шкале соответствующие метки. Ниже приведены значения «нормальных» сопротивлений (ESR) для конденсаторов различных номиналов:

  • 1 … 100 мкФ - не более 5 Ом;
  • 100 … 1000 мкФ - не более 2.5 Ом;
  • 1000 … 10,000 мкФ - не более 1 Ом.

(Следует заметить, что для очень малогабаритных конденсаторов и для конденсаторов номиналом 4.7 мкФ × 200 В сопротивление 5 Ом является нормальным).

В измерителе ESR использованы также германиевый диод D3 и шунтирующие измерительную головку диоды D4 и D5 типа КД521 (КД522), защищающие измерительную головку от напряжения разряда конденсатора в том случае, если он стоит на плате и не разряжен. Тем не менее, следует обязательно закоротить выводы проверяемого конденсатора перед его проверкой, чтобы он полностью разрядился! Особенно это касается конденсаторов на высокие напряжения и большой емкости, поскольку разрядный ток у них достаточно велик для того, чтобы сжечь и диоды и головку.

Трансформатор намотан на ферритовом кольце внешним диаметром 10 … 15 мм, значение магнитной проницаемости и размер некритичны. Можно использовать кольца от дросселей материнской платы компьютера, маломощных импульсных блоков питания и т.д. Первичная обмотка (к которой подключается проверяемый конденсатор) имеет 10 витков провода ПЭВ-0.4…0.5, вторичная (к которой подключается измерительный прибор) - 200 витков ПЭВ-0.1 …0.15. В зависимости от применяемого стрелочного прибора и тока полного отклонения его стрелки, может потребоваться корректировка количества витков первичной обмотки (если не удастся выставить стрелку в конец шкалы подстроечным резистором VR3), поэтому сначала лучше наматывать вторичную обмотку, а поверх нее - первичную.

Прибором можно также проверить катушку индуктивности или, например, трансформатор на наличие короткозамкнутых витков. Для этого ее подключают к гнездам «ESR». Катушки малой индуктивности проверяют, как и электролитические конденсаторы, при частоте 100 кГц, а большие - при частоте 1 кГц. У нормальной катушки высокое реактивное сопротивление, и стрелка останется в конце шкалы. При наличии же короткозамкнутых витков сопротивление резко уменьшается, и прибор покажет сопротивление в единицы Ом.

Питать прибор можно от батареи типа «Крона» или от сетевого адаптера с напряжением холостого хода (без нагрузки) от 9 до 18 В. При нормальных, исправных деталях ток, потребляемый прибором, не превышает 7-9 мА. К гнездам прибора подключаются измерительные щупы с зажимами «крокодил», провода для щупов следует использовать диаметром 0.7 … 1 мм и как можно меньшей длины, чтобы они не вносили значительной погрешности при измерениях.

Вместо измерительной головки (микроамперметра) можно, конечно, использовать обычный тестер в режиме измерения напряжений 1-2 В. Тогда при настройке нужно будет выставить подстроечными резисторами «L», «C» и «ESR» значение 1 В. Однако применение стрелочного индикатора предпочтительнее, так как шкала измерений нелинейна. Погрешность измерений прибора зависит исключительно от качества применяемых деталей и точности их подбора/настройки.

Конструкция

Внешний вид прибора показан на Рисунке 3. Печатная плата разрабатывалась под конкретные переключатели и корпус и здесь не приводится. (Корпуса такого размера и формы вряд ли сейчас можно найти). Деталей немного, и монтаж легко можно сделать навесным способом, прямо на контактах переключателей и переменных резисторов.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться .

08-01-2009

И. Потачин
Радио 12, 1998

Цифровой измерительный прибор в лаборатории радиолюбителя теперь не редкость. Однако не часто им можно измерить параметры конденсаторов и катушек индуктивности, даже если это мультиметр. Описываемая здесь простая приставка предназначена для использования совместно с мультиметрами или цифровыми вольтметрами (например, М-830В, М-832 и им подобными), не имеющими режима измерения параметров реактивных элементов.

Для измерения емкости и индуктивности с помощью несложной приставки использован принцип, подробно описанный в статье А. Степанова "Простой LC-метр" в "Радио" № 3 за 1982 г. Предлагаемый измеритель несколько упрощен (вместо генератора с кварцевым резонатором и декадного делителя частоты применен мультивибратор с переключаемой частотой генерации), но он позволяет с достаточной для практики точностью измерять емкость в пределах 2 пф...1 мкф и индуктивность 2 мкГн... 1 Гн. Кроме того, в нем вырабатывается напряжение прямоугольной формы с фиксированными частотами 1 МГц, 100 кГц, 10 кГц, 1 кГц, 100 Гц и регулируемой амплитудой от 0 до 5 В, что расширяет область применения устройства.

Задающий генератор измерителя (рис. 1) выполнен на элементах микросхемы DD1 (КМОП), частоту на его выходе изменяют с помощью переключателя SA1 в пределах 1 МГц - 100 Гц, подключая конденсаторы С1-С5. С генератора сигнал поступает на электронный ключ, собранный на транзисторе VT1. Переключателем SA2 выбирают режим измерения "L" или "С". В показанном на схеме положении переключателя приставка измеряет индуктивность. Измеряемую катушку индуктивности подключают к гнездам Х4, Х5, конденсатор - к ХЗ, Х4, а вольтметр - к гнездам Х6, Х7.

При работе вольтметр устанавливают в режим измерения постоянного напряжения с верхним пределом 1 - 2В. Следует учесть, что на выходе приставки напряжение изменяется в пределах 0... 1 В. На гнездах Х1, Х2 в режиме измерения емкости (переключатель SA2 - в положении "С") присутствует регулируемое напряжение прямоугольной формы. Его амплитуду можно плавно изменять переменным резистором R4.

Питается приставка от батареи GB1 с напряжением 9 В ("Корунд" или аналогичные ей) через стабилизатор на транзисторе VT2 и стабилитроне VD3.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или К561ЛА9 (исключив DD1.4), транзисторы VT1 и VT2-на любые маломощные кремниевые соответствующей структуры, стабилитрон VD3 заменим на КС156А, КС168А. Диоды VD1, VD2 - любые точечные германиевые, например, Д2, Д9, Д18. Переключатели желательно использовать миниатюрные.

Корпус прибора - самодельный или готовый подходящих размеров. Монтаж деталей (рис. 2) в корпусе - навесной на переключателях, резисторе R4 и гнездах. Вариант внешнего вида показан на рисунке. Разъемы ХЗ-Х5 - самодельные, изготовлены из листовой латуни или меди толщиной 0,1...0,2 мм, конструкция их понятна из рис. 3. Для подключения конденсатора или катушки необходимо ввести выводы детали до упора в клиновидный зазор пластин; этим достигается быстрая и надежная фиксация выводов.


Налаживание прибора производят с помощью частотомера и осциллографа. Переключатель SA1 переводят в верхнее по схеме положение и подбором конденсатора С1 и резистора R1 добиваются частоты 1 МГц на выходе генератора. Затем переключатель последовательно переводят в последующие положения и подбором конденсаторов С2 - С5 устанавливают частоты генерации 100 кГц, 10 кГц, 1 кГц и 100 Гц. Далее осциллограф подключают к коллектору транзистора VT1, переключатель SA2 - в положении измерения емкости. Подбором резистора R3 добиваются формы колебаний, близкой к меандру на всех диапазонах. Затем переключатель SA1 снова устанавливают в верхнее по схеме положение, к гнездам Х6, Х7 подключают цифровой или аналоговый вольтметр, а к гнездам ХЗ, Х4 - образцовый конденсатор емкостью 100 пф. Подстройкой резистора R7 добиваются показаний вольтметра 1 В. Потом переводят переключатель SA2 в режим измерения индуктивности и к гнездам Х4, Х5 подключают образцовую катушку с индуктивностью 100 мкГн, резистором R6 устанавливают показания вольтметра, также равные 1 В.

На этом настройка прибора заканчивается. На остальных диапазонах точность показаний зависит только от точности подбора конденсаторов С2 -С5. От редакции. Налаживание генератора лучше начать с частоты 100 Гц, которую устанавливают подбором резистора R1, конденсатор С5 не подбирают. Следует помнить, что конденсаторы СЗ - С5 должны быть бумажными или, что лучше, метаплопленочными (К71, К73, К77, К78). При ограниченных возможностях в подборе конденсаторов можно использовать и переключение секцией SA1.2 резисторов R1 и их подбор, а число конденсаторов надо уменьшить до двух (С1, СЗ). Номиналы сопротивлений резисторов составят в этом: случав 4,7: 47; 470 к0м.

  • Собрал эту схему, не работает. Закралось сомнение, а не перепутана ли кое-где полярность. По -моему есть несоответствие. Кто-то может авторитетно прокомментировать?
  • а диоды Д2б где нашли? раритет:D а в обще сомнения меня берут по поводу работоспособности данной схемы
  • В своё время купил набор конструктор функциональный генератор. Схема похожа. Иногда пользуюсь Терпимо работает.Зимой весной летом осенью приходиться подстраивать.Работаю на застеклённом балконе Пришлось выводить на переднюю панель подстройку рабочей точки. Покрутите R1. Но при уходе рабочей точки будут плыть показания. Посмотрите есть неплохие схемы с делением исходной частоты.
  • А что, в квартире температура в зависимости от времени года сильно меняется? У меня не значительно, наверное, подстраивать не пришлось бы, я полагаю. Пока прибор забросил-летом нет времени настраивать.Весной было, но почему-то не получал на ящик уведомления о сообщениях. По диодам Д2... Да никакой он не дифицитный. У меня их коробка. Да и вообще, деталей прошлых лет в достатке.
  • Странно, что автор или публиковавшие материал не заметили досадной ошибки в принципиальной схеме!? Минус питания измерительного прибора посажен на общую шину, а в соответствии с этим, должно быть по схеме: X6 "+", а X7 "-".
  • Всем доброй ночи, подскажите пожалуйста можно ли нетбуком прошить телефон? Заранее большое спасибо!!!
  • Можно, только не в этой теме... . :D
  • Мне больше вот эта схема нравится... . :)
  • пРИВЕТ ВСЕМ! Мужики, а можно и купить такой прибор: http://monitor.espec.ws/section30/topic187691p20.html Очень недорого. Если там в теме посмотреть, то у меня такойже, а количество желающих приобрести растёт. Сразу предупреждаю- Я НЕ РЕКЛАМЩИК и ЭТО НЕ РЕКЛАМА! :)
  • Здесь обсуждаем то, что можно своими руками сделать... . :)

Хотя у меня и имеется в наличии профессиональный автоматический мост Е7-8, но уж слишком он громозкий и тяжёлый - 35 кГ!

Поэтому, мне и захотелось попробовать свои силы в изготовлении несложного измерителя LC на микроконтроллере. Была найдена самая простая (но с претензиями на хорошее качество работы) схема на устаревшем, но достаточно доступном микроконтроллере 16F84A, LM311N и LCD индикаторе типа 1601.

Вариант печатной платы 90х65 мм этого LC измерителя от YL2GL (джампер J3 на плату не устанавливал (в нём нет надобности) - подсветка LCD индикатора 1601, если она у него есть, включена постоянно!):

Вид некоторых деталей, под которые разработана печатная плата:

Один из вариантов печатной платы LC измерителя выполненный методом ЛУТ:

Четыре версии файла прошивки в *.hex формате для программирования PICа 16F84A помещёны в Каталог файлов сайта (рекомендуют третью версию прошивки, как версию с автокалибровкой прибора при включении):

Программирование PIC 16F84A можно осуществить при помощи простейшего JDM программатора, подключаемого к порту COM1 компьютера (нужно помнить, что JDM программатор хорошо работает с более старыми компьютерами, а вот с новейшими - двухъядерными и всеми видами лаптопов, нотебуков, может не работать, так как у них принудительно ограничен ток на контактах COM порта. Поэтому, ищите компьютер, который будет работать с JDM программатором без проблем, или делайте программатор по другой схеме - с внешним питанием):

и программы ICprog.

С учётом покупки LCD индикатора 1601 на:

Хотелось бы отметить по схеме прибора, что нужно обратить внимание на наличие или отсутствие установленного на плате LCD индикатора 1601 резистора 10...12 Ом в цепи подсветки. При отсутствии, его нужно припаять последовательно с подсветкой, в противном случае можно её просто сжечь при установке джампера J3!

Имеется две схемы LC измерителя, отличающиеся схемой включения обмотки низковольтного реле. Во второй схеме обмотка реле через гасящий резистор подключается на землю, а не на +5В:

Прошивки PIC 16F84A приведены под первый вариант схемы, находящийся в начале статьи. Они могут, конечно, работать и с последним вариантом схемы, но перед показаниями значений ёмкости и индуктивности появится знак "-".

После сборки LC метра прибор запускается с первого включения. Для однострочного LCD индикатора 1601 необходимо замкнуть джампер J1. Для двухстрочного, типа 1602 - оставить разомкнутым. Подстроечным резистором 10К нужно отрегулировать контрасность LCD дисплея. Чем ближе движок резистора к "земле", тем выше контрасность дисплея.

После первого включения необходимо проверить частоту генератора на выходе LM311N, замкнув джампер J2, при положении переключателя L/C на С.

Частота на экране LCD должна быть в районе 550 кГц.

Показания на дисплее, при этом, будут без одного нуля - 55000.

Если у вас есть ёмкости с указанным на них 1% разбросом, то можно использовать и их.

Начинать настройку прибора лучше в режиме измерения ёмкости - С.

Нажимаем кнопку SW1 - калибровка.

На экране прибора кратковременно появится надпись Calibrating и показания на экране обнулятся до C=0.0 pF.

Вставляем в гнёзда эталонную ёмкость и если показания прибора отличаются от необходимого значения, то подбираем ёмкость последовательно с контактами низковольтного реле, каждый раз повторяя калибровку прибора.

Хотя у меня и имеется в наличии профессиональный автоматический мост Е7-8, но уж слишком он громозкий и тяжёлый - 35 кГ!

Поэтому, мне и захотелось попробовать свои силы в изготовлении несложного измерителя LC на микроконтроллере. Была найдена самая простая (но с претензиями на хорошее качество работы) схема на устаревшем, но достаточно доступном микроконтроллере 16F84A, LM311N и LCD индикаторе типа 1601.


Вариант печатной платы 90х65 мм этого LC измерителя от YL2GL (джампер J3 на плату не устанавливал (в нём нет надобности) - подсветка LCD индикатора 1601, если она у него есть, включена постоянно!):


Вид некоторых деталей, под которые разработана печатная плата:


Один из вариантов печатной платы LC измерителя выполненный методом ЛУТ:


Четыре версии файла прошивки в *.hex формате для программирования PICа 16F84A помещёны в Каталог файлов сайта (рекомендуют третью версию прошивки, как версию с автокалибровкой прибора...):

Программирование PIC 16F84A можно осуществить при помощи простейшего JDM программатора, подключаемого к порту COM1 компьютера (нужно помнить, что JDM программатор хорошо работает с более старыми компьютерами, а вот с новейшими - двухъядерными и всеми видами лаптопов, нотебуков, может не работать, так как у них принудительно ограничен ток на контактах COM порта. Поэтому, ищите компьютер, который будет работать с JDM программатором без проблем, или делайте программатор по другой схеме - с внешним питанием):


и программы ICprog.

С учётом покупки LCD индикатора 1601 на:

Хотелось бы отметить по схеме прибора, что нужно обратить внимание на наличие или отсутствие установленного на плате LCD индикатора 1601 резистора 10...12 Ом в цепи подсветки. При отсутствии, его нужно припаять последовательно с подсветкой, в противном случае можно её просто сжечь при установке джампера J3!

Имеется две схемы LC измерителя, отличающиеся схемой включения обмотки низковольтного реле. Во второй схеме обмотка реле через гасящий резистор подключается на землю, а не на +5В:


Прошивки PIC 16F84A приведены под первый вариант схемы, находящийся в начале статьи. Они могут, конечно, работать и с последним вариантом схемы, но перед показаниями значений ёмкости и индуктивности появится знак "-".

После сборки LC метра прибор запускается с первого включения. Для однострочного LCD индикатора 1601 необходимо замкнуть джампер J1. Для двухстрочного, типа 1602 - оставить разомкнутым. Подстроечным резистором 10К нужно отрегулировать контрасность LCD дисплея. Чем ближе движок резистора к "земле", тем выше контрасность дисплея.

После первого включения необходимо проверить частоту генератора на выходе LM311N, замкнув джампер J2, при положении переключателя L/C на С.

Частота на экране LCD должна быть в районе 550 кГц.

Затем, короткой перемычкой замыкаем гнёзда прибора в режиме L.

Прибор пишет - Calibrating и через секунду переходит в режим измерения: L=0.00 mkH.


Вытаскиваем пермычку, вставляем в гнёзда измеряемую эталонную индуктивность и смотрим показания прибора. Если значение отличается от того, что мы намеряли на эталонном приборе, то подбираем поточнее индуктивность 82 мкГ прибора.


Поэтому, желательно использовать дроссель с возможностью подстройки индуктивности (ферритовый каркас с подстроечным сердечником).

Затем переходим в режим измерения ёмкости С.

На LCD индикатора высветится С=х.х pF


Кратковременно нажимаем кнопку SW1 - калибровка.