У какого двигателя стирлинга лучшая конструкция с максимальным кпд. Новостной и аналитический портал "время электроники" Недостатки конструкции Стирлинга

Речь в данной статье пойдёт о всем знакомого, но многим не понятного термина коэффициент полезного действия (КПД). Что же это такое? Давайте разберёмся. Коэффициент полезного действия, далее по тексту (КПД) - характеристика эффективности системы какого-либо устройства, в отношении преобразования или передачи энергии. Определяется отношением полезной использованной энергии к суммарному количеству энергии, полученному системой. Обозначается обычно? (« эта»). ? = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде: n=(A:Q) х100 %, где А - полезная работа, а Q - затраченная работа. В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии! Просматривая разные сайты, часто удивляюсь, как радиолюбители сообщают, вернее, хвалят свои конструкции, за высокий КПД, не имея понятия, что это такое! Для наглядности на примере рассмотрим упрощенную схему преобразователя, и узнаем, как найти КПД устройства. Упрощенная схема изображена на рис.1

Допустим за основу взяли повышающий DC/DC преобразователь напряжения (далее ПН), из однополярного, в повышенное однополярное. В разрыв цепи питания включаем амперметр РА1,и параллельно входу питания ПН вольтметр РА2, показания которых нужны для расчёта потребляемой (Р1) мощности устройства и нагрузки вместе от источника питания. К выходу ПН в разрыв питания нагрузки тоже включаем амперметр РАЗ и вольтметр РА4, требующиеся для расчёта потребляемой нагрузкой (Р2) мощности от ПН. Итак, всё готово для расчёта КПД, тогда приступим. Включаем своё устройство, производим замеры показаний приборов и рассчитываем мощности Р1 и Р2. Отсюда Р1=I1 x U1, и P2=I2 x U2. Теперь рассчитываем КПД по формуле: КПД(%)= Р2: Р1 х100. Вот теперь вы узнали примерно реальный КПД своего устройства. По подобной формуле можно рассчитать ПН и с двух полярным выходом по формуле: КПД(%)= (Р2+Р3) : Р1 х100, а также понижающий преобразователь. Следует отметить, что в значение (Р1) входит также и ток потребления, например: ШИМ-контроллёра, и (или) драйвера управления полевыми транзисторами, и прочими элементами конструкции.


Для справки: производители автоусилителей зачастую указывают выходную мощность усилителя намного больше, чем в реальности! Но, узнать примерную реальную мощность автоусилителя, можно по простой формуле. Допустим на автоусилителе в цепи питания +12v, стоит предохранитель на 50 А. Высчитываем, Р=12V х 50A, итого получаем мощность потребления 600 Вт. Даже в качественных и дорогих моделях КПД всего устройства вряд ли превышает 95%. Ведь часть КПД рассеивается в виде тепла на мощных транзисторах, обмотках трансформатора, выпрямителях. Так вот вернёмся к расчёту, получаем 600 Вт: 100% х92=570Вт. Следовательно, не какие там 1000 Вт или даже 800 Вт, как пишут производители, этот автоусилитель не выдаст! Надеюсь, эта статья поможет Вам разобраться в такой относительной величине, как КПД! Всем удачи в разработках и повторении конструкций. С Вами был invertor.

Современное автомобилестроение вышло на такой уровень развития, при котором без фундаментальных научных исследований практически невозможно достигнуть кардинальных улучшений в конструкции традиционных моторов внутреннего сгорания. Такая ситуация вынуждает конструкторов обратить внимание на альтернативные проекты силовых установок . Одни инженерные центры сосредоточили свои силы на создании и адаптации к серийному выпуску гибридных и электрических моделей, другие автоконцерны вкладывают средства в разработку двигателей на топливе из возобновляемых источников (например, биодизель на рапсовом масле). Существуют и другие проекты силовых агрегатов, которые в перспективе могут стать новым стандартным движителем для транспортных средств.

Среди возможных источников механической энергии для автомобилей будущего следует назвать двигатель внешнего сгорания, который был изобретен в середине XIX века шотландцем Робертом Стирлингом в качестве тепловой расширительной машины.

Схема работы

Двигатель Стирлинга преобразует тепловую энергию, подводимую извне, в полезную механическую работу за счет изменения температуры рабочего тела (газа или жидкости), циркулирующего в замкнутом объеме.

В общем виде схема работы устройства выглядит следующим образом: в нижней части двигателя рабочее вещество (например, воздух) нагревается и, увеличиваясь в объеме, выталкивает поршень вверх. Горячий воздух проникает в верхнюю часть мотора, где охлаждается радиатором. Давление рабочего тела снижается, поршень опускается для следующего цикла. При этом система герметична и рабочее вещество не расходуется, а только перемещается внутри цилиндра.

Существует несколько вариантов конструкции силовых агрегатов, использующих принцип Стирлинга.

Стирлинг модификации «Альфа»

Двигатель состоит из двух раздельных силовых поршней (горячего и холодного), каждый из которых находится в своем цилиндре. К цилиндру с горячим поршнем подводится тепло, а холодный цилиндр расположен в охлаждающем теплообменнике.

Стирлинг модификации «Бета»

Цилиндр, в котором находится поршень, нагревается с одной стороны и охлаждается с противоположного конца. В цилиндре двигается силовой поршень и вытеснитель, предназначенный для изменения объема рабочего газа. Обратное перемещение остывшего рабочего вещества в горячую полость двигателя выполняет регенератор.

Стирлинг модификации «Гамма»

Конструкция состоит из двух цилиндров. Первый - полностью холодный, в котором движется силовой поршень, а второй, горячий с одной стороны и холодный с другой, служит для перемещения вытеснителя. Регенератор для циркуляции холодного газа может быть общим для обоих цилиндров или входить в конструкцию вытеснителя.

Преимущества двигателя Стирлинга

Как и большинство моторов внешнего сгорания, Стирлингу присуща многотопливность : двигатель работает от перепада температуры, независимо от причин его вызвавших.

Интересный факт! Однажды была продемонстрирована установка, которая функционировала на двадцати вариантах топлива. Без остановки двигателя во внешнюю камеру сгорания подавались бензин, дизельное топливо, метан, сырая нефть и растительное масло - силовой агрегат продолжал устойчиво работать.

Двигатель обладает простотой конструкции и не требует дополнительных систем и навесного оборудования (ГРМ, стартер, коробка передач).

Особенности устройства гарантируют длительный эксплуатационный ресурс: более ста тысяч часов непрерывной работы.

Двигатель Стирлинга бесшумен , так как в цилиндрах не происходит детонация и отсутствует необходимость вывода отработанных газов. Модификация «Бета», оснащенная ромбическим кривошипно-шатунным механизмом, является идеально сбалансированной системой, которая в процессе работы не имеет вибраций.

В цилиндрах двигателя не происходят процессы, которые могут оказать негативное воздействие на окружающую среду. При выборе подходящего источника тепла (например, солнечная энергия) Стирлинг может быть абсолютно экологически чистым силовым агрегатом.

Недостатки конструкции Стирлинга

При всем наборе положительных свойств немедленное массовое применение двигателей Стирлинга невозможно по следующим причинам:

Основная проблема заключается в материалоемкости конструкции. Охлаждение рабочего тела требует наличия радиаторов большого объема, что существенно увеличивает размеры и металлоемкость изготовления установки.

Нынешний технологический уровень позволит двигателю Стирлинга сравниться по характеристикам с современными бензиновыми моторами только за счет применения сложных видов рабочего тела (гелий или водород), находящихся под давлением более ста атмосфер. Этот факт вызывает серьезные вопросы как в области материаловедения, так и обеспечения безопасности пользователей.

Немаловажная эксплуатационная проблема связана с вопросами теплопроводности и температурной стойкости металлов. Тепло подводится к рабочему объему через теплообменники, что приводит к неизбежным потерям. Кроме того, теплообменник должен быть изготовлен из термостойких металлов, устойчивых к высокому давлению. Подходящие материалы очень дороги и сложны в обработке.

Принципы изменения режимов двигателя Стирлинга также кардинально отличаются от традиционных, что требует разработки специальных управляющих устройств. Так, для изменения мощности необходимо изменить давление в цилиндрах, угол фаз между вытеснителем и силовым поршнем или повлиять на емкость полости с рабочим телом.

Один из способов управления скоростью вращения вала на модели двигателя Стирлинга можно увидеть на следующем видео:

Коэффициент полезного действия

В теоретических расчетах эффективность двигателя Стирлинга зависит от разницы температур рабочего тела и может достигать 70% и более в соответствии с циклом Карно.

Однако первые реализованные в металле образцы обладали крайне невысоким КПД по следующим причинам:

  • неэффективные варианты теплоносителя (рабочего тела), ограничивающие максимальную температуру нагрева;
  • потери энергии на трение деталей и теплопроводность корпуса двигателя;
  • отсутствие конструкционных материалов, устойчивых к высокому давлению.

Инженерные решения постоянно совершенствовали устройство силового агрегата. Так, во второй половине XX века четырехцилиндровый автомобильный двигатель Стирлинга с ромбическим приводом показал на испытаниях КПД равный 35% на водном теплоносителе с температурой 55 °C.Тщательная проработка конструкции, применение новых материалов и доводка рабочих узлов обеспечили КПД экспериментальных образцов в 39%.

Примечание! Современные бензиновые двигатели аналогичной мощности обладают коэффициентом полезного действия на уровне 28-30%, а турбированные дизели в пределах 32-35%.

Современные образцы двигателя Стирлинга, такие как созданный американской компанией Mechanical Technology Inc, демонстрируют эффективность до 43,5%. А с освоением выпуска жаропрочной керамики и аналогичных инновационных материалов появится возможность значительного повышения температуры рабочей среды и достижения КПД в 60%.

Примеры успешной реализации автомобильных Стирлингов

Несмотря на все сложности, известно немало работоспособных моделей двигателя Стирлинга, применимых для автомобилестроения.

Заинтересованность в Стирлинге, подходящем для установки в автомобиль, появилась в 50-е годы XX века. Работу в данном направлении вели такие концерны, как Ford Motor Company, Volkswagen Group и другие.

Компания UNITED STIRLING (Швеция) разработала Стирлинг, в котором максимально использовались серийные узлы и агрегаты, выпускаемые автопроизводителями (коленчатый вал, шатуны). Получившийся в результате четырехцилиндровый V-образный мотор обладал удельной массой 2,4 кг/кВт, что сравнимо с характеристиками компактного дизеля. Данный агрегат был успешно опробован в качестве силовой установки семитонного грузового фургона.

Одним из успешных образцов является четырехцилиндровый двигатель Стирлинга нидерландского производства модели «Philips 4-125DA», предназначавшийся для установки на легковой автомобиль. Мотор имел рабочую мощность 173 л. с. в размерах, аналогичных классическому бензиновому агрегату.

Значительных результатов добились инженеры компании General Motors, построив в 70-х годах восьмицилиндровый (4 рабочих и 4 компрессионных цилиндра) V-образный двигатель Стирлинга со стандартным кривошипно-шатунным механизмом.

Аналогичной силовой установкой в1972 году оснащалась ограниченная серия автомобилей Ford Torino , расход топлива у которой снизился на 25% по сравнению с классической бензиновой V-образной восьмеркой.

В настоящее время более полусотни зарубежных компаний ведут работы по совершенствованию конструкции двигателя Стирлинга в целях его адаптации к массовому выпуску для нужд автомобилестроения. И если удастся устранить недостатки данного типа двигателей, в то же время сохранив его преимущества, то именно Стирлинг, а не турбины и электромоторы, придет на смену бензиновым ДВС.

Однотактные преобразователи с высоким КПД, 12/220 вольт

Некоторые привычные бытовые электроприборы, такие как лампа дневного света, фотовспышка и ряд других, иногда бывает удобно использовать в автомобиле.

Так как большинство устройств рассчитаны на питание от сети с действующим напряжением 220 В, нужен повышающий преобразователь. Электробритва или же небольшая лампа дневного света потребляют мощность не более 6...25 Вт. При этом от такого преобразователя часто не требуется переменное напряжение на выходе. Указанные выше бытовые электроприборы нормально работают при питании постоянным или однополярным пульсирующим током.

Первый вариант однотактного (обратноходового) импульсного преобразователя постоянного напряжения 12 В/220 В выполнен на импортной микросхеме ШИМ-контроллера UC3845N и мощном N-канапьном полевом транзисторе BUZ11 (рис. 4.10). Эти элементы более доступны чем отечественные аналоги, и позволяют добиться высокого КПД от устройства, в том числе и за счет малого падения напряжения исток-сток на открытом полевом транзисторе (КПД преобразователя зависит и от соотношения ширины импульсов, передающих энергию в трансформатор к паузе).

Указанная микросхема специально предназначена для выполнения однотактных преобразователей и имеет внутри все необходимые узлы, что позволяет сократить число внешних элементов. У нее имеется сильноточный квазикомплементарный выходной каскад, специально предназначенный для непосредственного управления мощным. М-канальным полевым транзистором с изолированным затвором. Рабочая частота импульсов на выходе микросхемы может достигать 500 кГц. Частота определяется номиналами элементов R4-C4 и в приведенной схеме составляет около 33 кГц (Т=50 мкс).

Рис. 4.10. Схема однотактного импульсного преобразователя, повышающего напряжение

Микросхема также содержит схему защиты для отключения работы преобразователя при снижении напряжения питания ниже 7,6 В, что полезно при питании устройств от аккумулятора.

Рассмотрим более подробно работу преобразователя. На рис. 4.11 приведены диаграммы напряжений, поясняющие проходящие процессы. При появлении положительных импульсов на затворе полевого транзистора (рис. 4.11, а) он открывается и на резисторах R7-R8 будут импульсы, показанные на рис. 4.11, в.

Наклон вершины импульса зависит от индуктивности обмотки трансформатора и если на вершине имеется резкое увеличение амплитуды напряжения, как это показано пунктиром, это говорит о насыщении магнитопровода. При этом резко увеличиваются потери преобразования, что приводит к нагреву элементов и ухудшает работу устройства. Чтобы устранить насыщение, потребуется уменьшить ширину импульса или увеличить зазор в центре магнитопровода. Обычно бывает достаточно зазора 0,1...0,5 мм.

В момент выключения силового транзистора индуктивность обмоток трансформатора вызывает появление выбросов напряжения, как это показано на рисунках.

Рис. 4.11. Диаграммы напряжения в контрольных точках схемы

При правильном изготовлении трансформатора Т1 (секционировании вторичной обмотки) и низковольтном питании амплитуда выброса не достигает опасного для транзистора значения и поэтому в данной схеме специальных мер, в виде демпфирующих цепей в первичной обмотке Т1, не используется. А чтобы подавить выбросы в сигнале токовой обратной связи, приходящем на вход микросхемы DA1.3, установлен простой RC-фильтр из элементов R6-C5.

Напряжение на входе преобразователя, в зависимости от состояния аккумулятора, может меняться от 9 до 15 В (что составляет 40%). Чтобы ограничить изменение выходного напряжения, обратная связь по входу снимается с делителя из резисторов R1-R2. При этом выходное напряжение на нагрузке будет поддерживаться в диапазоне 210...230 В (Rнaгp=2200 Ом), см. табл. 4.2, т. е. меняется не более чем на 10%, что вполне допустимо.

Таблица 4.2. Параметры схемы при изменении напряжения питания

Стабилизация выходного напряжения осуществляется за счет автоматического изменения ширины открывающего транзистор VT1 импульса от 20 мкс при Uпит=9 В до 15 мкс (Uпит=15 В).

Все элементы схемы, кроме конденсатора С6, размещены на односторонней печатной плате из стеклотекстолита размером 90x55 мм (рис. 4.12).

Рис. 4.12. Топология печатной платы и расположение элементов

Трансформатор Т1 крепится на плате при помощи винта М4х30 через резиновую прокладку, как это показано на рис. 4.13.

Рис. 4.13 Вид крепления трансформатора Т1

Транзистор VT1 устанавливается на радиаторе. Конструкция штекера. ХР1 должна исключать ошибочную подачу напряжения на схему.

Импульсный трансформатор Т1 выполнен с использованием широко распространенных броневых чашек БЗО из магнитопровода М2000НМ1. При этом в центральной части у них должен быть обеспечен зазор 0,1...0,5 мм.

Магнитопровод можно приобрести с уже имеющимся зазором или же сделать его при помощи грубой наждачной бумаги. Величину зазора лучше экспериментально подобрать при настройке так, чтобы магнитопровод не входил в режим насыщения - это удобно контролировать по форме напряжения на истоке VT1 (см. рис. 4.11, в).

У трансформатора Т1 обмотка 1 -2 содержит 9 витков проводом диаметром 0,5.0,6 мм, обмотки 3-4 и 5-6 по 180 витков проводом диаметром 0,15...0,23 мм (провод типа ПЭЛ или ПЭВ). При этом первичная обмотка (1-2) располагается между двумя вторичными, т.е. сначала наматывается обмотка 3-4, а потом 1-2 и 5-6.

При подключении обмоток трансформатора важно соблюдать показанную на схеме фазировку. Неправильная фазировка не приведет к повреждению схемы, но работать как нужно она не будет.

При сборке использованы детали: подстроенный резистор R2 - СПЗ-19а, постоянные резисторы R7 и R8 типа С5-16М на 1 Вт, остальные могут быть любого типа; электролитические конденсаторы С1 - К50-35 на 25 В, С2 - К53-1А на 16 В, С6 - К50-29В на 450 В, а остальные типа К10-17. Транзистор VT1 установлен на небольшой (по размерам платы) радиатор, сделанный из дюралевого профиля. Настройка схемы заключается в проверке правильной фразировки подключения вторичной обмотки при помощи осциллографа, а также установки резистором R4 нужной частоты. Резистором R2 устанавливается выходное напряжение на гнездах XS1 при включенной нагрузке.

Приведенная схема преобразователя предназначена для работы с заранее известной мощностью нагрузки (6...30 Вт - постоянно подключенной). В холостом ходу напряжение на выходе схемы может достигать 400 В, что не для всех устройств допустимо, так как может привести к их повреждению из-за пробоя изоляции.

Если преобразователь предполагается использовать в работе с нагрузкой разной мощности, к тому же включаемой во время работы преобразователя, то необходимо снимать сигнал обратной связи по напряжению с выхода. Вариант такой схемы показан на рис. 4.14. Это не только позволяет ограничить выходное напряжение схемы в холостом ходу величиной 245 В, но и снизит потребляемую мощность в этом режиме примерно в 10 раз (Iпотр=0,19 А; Р=2,28 Вт; Uh=245 В).

Рис. 4.14. Схема однотактного преобразователя с ограничением максимального напряжения в холостом ходу

Трансформатор Т1 имеет такой же магнитопровод и намоточные данные, что и в схеме (рис. 4.10), но содержит дополнительную обмотку (7-4) - 14 витков проводом ПЭЛШО диаметром 0.12.0.18 мм (она наматывается последней). Остальные обмотки выполнены аналогично, как и в выше описанном трансформаторе.

Для изготовления импульсного трансформатора можно также использовать квадратные сердечники серии. КВ12 из феррита М2500НМ - число витков в обмотках в этом случае не изменится. Для замены магнитопроводов броневых (Б) на более современные квадратные (KB) можно воспользоваться табл. 4.3.

Сигнал обратной связи по напряжению с обмотки 7-8 через диод поступает на вход (2) микросхемы, что позволяет более точно поддерживать выходное напряжение в заданном диапазоне, а также обеспечить гальваническую развязку между первичной и выходной цепью. Параметры такого преобразователя, в зависимости от питающего напряжения, приведены в табл. 4.4.

Таблица 4.4. Параметры схемы при изменении напряжения питания

Еще немного повысить КПД описанных преобразователей можно, если импульсные трансформаторы закреплять на плате диэлектрическим винтом или термостойким клеем. Вариант топологии печатной платы для сборки схемы приведен на рис. 4.15.

Рис. 4.15. Топология печатной платы и расположение элементов

При помощи такого преобразователя можно питать от бортовой сети автомобиля электробритвы "Агидель", "Харьков" и ряд других устройств.