Что позволяет современным двигателям быть максимально маневренными. Истребители. Пятое поколение. Сверхманёвренность и "Топ Ган". Турбовентиляторные реактивные двигатели

Маневренность самолета - это его способность изменять за определенный промежуток времени свое положение в пространстве (направление, скорость и высоту полета), т. е. совершать эволюции, маневрировать в воздухе. Маневренные свойства самолета зависят от ряда факторов: аэродинамические и прочностные ограничения, располагаемая тяга двигателей, полетный вес и др. Эксплуатационная маневренность самолета определяется его управляемостью, приемистостью двигателей, быстротой включения реверса тяги, быстротой отклонения закрылков, щитков, спойлеров.

Управляемость самолета - это его способность изменять режим

полета по воле пилота (при отклонении им рычагов управления). При этом движения рычагов управления должны быть простыми и сопровождаться небольшими, но хорошо ощущаемыми на них усилиями.

Устойчивость самолета - способность его самостоятельно, без вмешательства пилота, сохранять заданный режим полета и возвращаться к исходному равновесию после прекращения действия внешних возмущений. Иначе говоря, устойчивость, по определению Н. Е. Жуковского, можно понимать как «прочность» равновесия.

Самолет должен быть устойчив относительно всех трех осей. Хорошие характеристики устойчивости необходимы для лучшей управляемости самолета. У устойчивого самолета более простые движения рычагами управления и меньше общая затрата нервной и мускульной энергии пилота на управление.

Для удобства рассмотрения устойчивость условно подразделяют на статическую устойчивость - свойство самолета обнаруживать тенденцию к восстановлению нарушенного равновесия в начальный момент времени и динамическую устойчивость - свойство самолета без вмешательства пилота восстанавливать исходный режим полета через некоторое время после прекращения действия возмущения.

Наличие статической устойчивости является необходимым, но недостаточным условием динамической устойчивости самолета.

Продольную статическую устойчивость разделяют на устойчивость по перегрузке - способность самолета самостоятельно, без вмешательства пилота, сохранять перегрузку исходного режима полета и на устойчивость по скорости - способность самолета самостоятельно, без вмешательства пилота, сохранять скорость исходного режима полета.

В случае полета со скольжением у самолета возникают путевой (относительно оси О у) и поперечный (относительно оси Олс) статические моменты. У самолета, обладающего путевой (флюгерной) устойчивостью, возникающий при скольжении момент стремится уничтожить скольжение. У поперечно устойчивого самолета возникающий при скольжении момент стремится накренить самолет в сторону, обратную скольжению. Накренение самолета вызывает разворот в сторону крена и способствует, таким образом, уничтожению скольжения.

Путевая устойчивость самолета обеспечивается в основном вертикальным оперением. Чем больше площадь всех вертикальных поверхностей (киль, форкиль, шайбы, гребни и др.) и чем больше плечо этих поверхностей до центра тяжести самолета, тем лучше путевая устойчивость самолета.

Поперечная устойчивость самолета обеспечивается углом поперечного V крыла и высотой киля. Чем больше угол поперечного V крыла и чем выше киль, тем лучше поперечная устойчивость самолета. Увеличение стреловидности крыла также способствует повышению поперечной устойчивости самолета.

У самолетов со стреловидными крыльями поперечная устойчивость в значительной мере зависит от угла атаки, возрастая по мере его увеличения.

Самолет с большой степенью поперечной устойчивости отвечает энергичным кренением на возникновение скольжения. При избыточной поперечной устойчивости существенно усложняется пилотирование в случае полета в болтанку и при возникновении несимметричной тяги.

Однако пилот в основном оценивает не проявление поперечной и путевой устойчивости в отдельности, а их совокупность. Одновременное проявление путевой и поперечной устойчивости рассматривается как боковая устойчивость самолета. Боковая устойчивость предусматривает определенную зависимость между путевой и поперечной устойчивостью.

При больших значениях величины у, поведение самолета оценивается как неудовлетворительное, т. е. возникновение скольжения сопровождается резким кренением и, как следствие, разбалтыванием самолета. Самолет попеременно кренится и рыскает из стороны в сторону.

Хорда условного прямоугольного крыла, имеющего при равных углах атаки одинаковые с крылом рассматриваемого самолета величины полной аэродинамической силы и продольного момента, называется средней аэродинамической хордой (САХ). Величина и положение САХ для каждого самолета указаны в техническом описании.

Так как самолет в воздухе вращается вокруг центра тяжести, то положение центра тяжести (центровка) оказывает существенное влияние

Выход центровки за установленный для данного типа самолета диапазон недопустим. Чрезмерное смещение центровки назад (за установленные ограничения) вызовет сначала ухудшение устойчивости самолета по перегрузке, а затем может привести к появлению неустойчивости. Однако и излишне передняя центровка затрудняет управляемость самолета и может привести к «нехватке руля» при посадке.

Основные понятия

Устойчивость и управляемость относятся к числу особенно важных физических свойств самолета. От них в значительной мере зависят безопасность полетов, простота и точность пилотирования и полная реализация летчиком технических возможностей самолета.

При изучении устойчивости и управляемости самолета его представляют как тело, движущееся поступательно под действием внешних сил и вращающееся под действием моментов этих сил.

Для установившегося полёта необходимо, чтобы силы и моменты были взаимно уравновешены.

Если по каким-то причинам это равновесие нарушается, то центр масс самолёта станет совершать неравномерное движение по криволинейной траектории, а сам самолёт начнёт вращаться.

Осями вращения самолёта принято считать оси связанной системы координат с началом координат
в центре масс самолета. Ось ОХ располагается в плоскости симметрии самолета и направлена по его продольной оси. Ось ОУ перпендикулярна оси ОХ, а ось ОZ перпендикулярна плоскости ХОУ и направлена
в сторону правого полукрыла.

Моменты, вращающие самолет вокруг этих осей, имеют следующие названия:

М х – момент крена или поперечный момент;

М Y – момент рысканья или путевой момент;

М z – момент тангажа или продольный момент.

Момент М z , увеличивающий угол атаки, называется кабрирующим, а момент М z , вызывающий уменьшение угла атаки, - пикирующим.

Рис. 6.1. Моменты, действующие на самолет

Для определения положительного направления моментов используется следующее правило:

если из начала координат направить взгляд вдоль положительного направления соответствующей оси, то вращение по часовой стрелке будет положительным.

Таким образом,

· момент М z положителен в случае кабрирования,

· момент М х положителен в случае крена на правое полукрыло,

· момент М Y положителен при развороте самолета влево.

Положительному отклонению руля соответствует отрицательный момент и наоборот. Следовательно, за положительное отклонение рулей следует считать:

· руль высоты – вниз,

· руль поворота – вправо,

· правый элерон – вниз.

Положение самолета в пространстве определяется тремя углами – тангажа, крена и рысканья.

Углом крена называется угол между линией горизонта и осью ОZ,

углом скольжения – угол между вектором скорости и плоскостью симметрии самолета,

углом тангажа – угол между хордой крыла или осью фюзеляжа и линией горизонта.

Угол крена положителен, если самолет находится в правом крене.

Угол скольжения положителен при скольжении на правое полукрыло.

Угол тангажа считается положительным, если нос самолета поднят над горизонтом.

Равновесием называется такое состояние самолёта, при котором все силы и моменты, действующие на него, взаимно уравновешены и самолёт совершает равномерное прямолинейное движение.

Из механики известны 3 вида равновесия:

a) устойчивое б) безразличное в) неустойчивое;

Рис. 6.2. Виды равновесия тела

В таких же видах равновесия может находиться
и самолёт.

Продольное равновесие - это состояние, при котором самолёт не имеет стремления к изменению угла атаки.

Путевое равновесие - самолёт не имеет стремления к изменению направления полёта.

Поперечное равновесие - самолёт не имеет стремления к изменению угла крена.

Равновесие самолёта может быть нарушено из-за:

1) нарушения режимов работы двигателя или их отказа в полёте;

2) обледенения самолёта;

3) полёта в неспокойном воздухе;

4) несинхронного отклонения механизации;

5) разрушения частей самолёта;

6) срывного обтекания крыла, оперения.

Обеспечение определённого положения летящего самолёта по отношению к траектории движения или по отношению к земным предметам называется балансировкой самолёта.

В полёте балансировка самолёта достигается отклонением органов управления.

Устойчивостью самолёта называется его способность самостоятельно без вмешательства лётчика восстанавливать случайно нарушенное равновесие.

По словам Н.Е.Жуковского устойчивость - это прочность движения.

Для практики летной эксплуатации балансировка
и устойчивость самолёта не равноценны. На самолёте, на котором не обеспечена балансировка, летать нельзя, тогда как на неустойчивом самолёте полёт возможен.

Оценка устойчивости движения самолета производится с помощью показателей статической и динамической устойчивости.

Под статической устойчивостью понимается его тенденция к восстановлению исходного равновесного состояния после случайного нарушения равновесия. Если при нарушении равновесия возникают силы
и моменты, стремящиеся восстановить равновесие, то самолет статически устойчив.

При определении динамической устойчивости оценивается уже не начальная тенденция к устранению возмущения, а характер протекания возмущенного движения самолета. Для обеспечения динамической устойчивости возмущенное движение самолета должно быть быстро затухающим.

Таким образом, самолет устойчив при наличии:

· статической устойчивости;

· хороших демпфирующих свойств самолета, способствующих интенсивному затуханию его колебаний в возмущенном движении.

К количественным показателям статической устойчивости самолета относятся степень продольной, путевой и поперечной статической устойчивости.

К характеристикам динамической устойчивости относятся показатели качества процесса уменьшения (затухания) возмущений: время затухания отклонений, максимальные значения отклонений, характер движения в процессе уменьшения отклонений.

Под управляемостью самолёта понимается его способность исполнять по воле лётчика любой маневр, предусмотренный техническими условиями для данного типа самолёта.

От управляемости самолета в значительной мере зависит и его маневренность.

Маневренностью самолета называют его способность изменять за определенный промежуток времени скорость, высоту и направление полета.

Управляемость самолета тесно связана с его устойчивостью. Управляемость при хорошей устойчивости обеспечивает летчику простоту управления, а в случае необходимости позволяет быстро исправить случайную ошибку, допущенную в процессе управления,
а также легко возвратить самолет к заданным условиям балансировки при воздействии на него внешних возмущений.

Устойчивость и управляемость самолета должны находиться в определенном соотношении.

Если самолет обладает большой устойчивостью,
то усилия при управлении самолетом чрезмерно велики и пилот при маневрировании будет быстро
утомляться. О таком самолете говорят, что он тяжел в управлении.

Излишне легкое управление также недопустимо, так как затрудняет точное дозирование отклонений рычагов управления и может вызвать раскачку самолета.

Балансировка, устойчивость и управляемость самолёта разделяется на продольную и боковую.

Боковая устойчивость и управляемость подразделяются на поперечную и путевую (флюгерную).

Продольная устойчивость

Продольной устойчивостью называется способность самолёта без вмешательства пилота восстанавливать нарушенное продольное равновесие (устойчивость относительно ОZ)

Продольная устойчивость обеспечивается:

1) соответствующими размерами горизонтального оперения г.о., площадь которого зависит от площади крыла;

2) плечом горизонтального оперения L г.о, т.е. расстоянием от центра масс самолёта до центра давления г.о.

3) Центровкой , т.е. расстоянием от носка средней аэродинамической хорды (САХ) до центра масс самолёта, выраженным в процентах от величины САХ:


Рис. 6.3. Определение средней аэродинамической хорды

САХ (b a ) - хорда некоторого условного прямоугольного крыла, которое при такой же, как у реального крыла, площади имеет такие же коэффициенты аэродинамических сил и моментов.

Величину и положение САХ чаще всего находят графически.

Положение центра масс самолёта, а значит, его центровки зависит от:

1) загрузки самолёта и изменения этой нагрузки в полёте;

2) размещения пассажиров и выработки топлива.

При уменьшении центровки увеличивается устойчивость, но уменьшается управляемость.

При увеличении центровки уменьшается устойчивость, но увеличивается управляемость.

Поэтому передний предел центровок устанавливается из условия получения безопасной посадочной скорости и достаточной управляемости, а задний предел - из условия обеспечения достаточной устойчивости.

Обеспечение продольной устойчивости по углу атаки

Нарушение продольного равновесия выражается
в изменении угла атаки и скорости полета, причем угол атаки изменяется значительно быстрее, чем скорость. Поэтому в первый момент после нарушения равновесия проявляется устойчивость самолета по углу атаки (по перегрузке).

При нарушении продольного равновесия самолета угол атаки изменяется на величину и вызывает изменение подъемной силы на величину , которая складывается из приращений подъемной силы крыла и горизонтального оперения:

Крыло и самолёт в целом обладают важным свойством, заключающимся в том, что при изменении угла атаки происходит такое перераспределение аэродинамической нагрузки, что равнодействующая его прироста проходит через одну и ту же точку F, удалённую от носка САХ на расстояние Х f .

Рис.6.4. Обеспечение продольной устойчивости самолета

Точка приложения приращения подъемной силы , вызванного изменением угла атаки при неизменной скорости, называется фокусом .

Степень продольной статической устойчивости
самолета определяется взаимным расположением центра масс и фокуса самолета.

Положение фокуса при безотрывном обтекании не зависит от угла атаки.

Положение центра масс, т.е. центровка самолета, определяется в процессе проектирования компоновкой самолета, а при эксплуатации – заправкой или выработкой топлива, загрузкой и т.п. Меняя центровку самолета, можно изменять степень его продольной статической устойчивости. Существует определенный диапазон центровок, в пределах которого можно размещать центр масс самолета.

Если грузы на самолете разместить так, чтобы центр масс самолета совпадал с его фокусом, самолет будет безразличен к нарушению равновесия. Центровка в этом случае называется нейтральной .

Смещение центра масс относительно нейтральной центровки вперед обеспечивает самолету продольную статическую устойчивость, а смещение ц.м. назад делает его статически неустойчивым.

Таким образом, для обеспечения продольной устойчивости самолета его центр масс должен находиться впереди фокуса.

В этом случае при случайном изменении угла атаки появляется стабилизирующий момент a, возвращающий самолет на заданный угол атаки (рис.6.4).

Для смещения фокуса за центр масс и применяют горизонтальное оперение.

Расстояние между центром масс и фокусом, выраженное в долях САХ, называется запасом устойчивости по перегрузке или запасом центровки :

Существует минимально-допустимый запас устойчивости, который должен быть равен не менее 3% САХ.

Положение ц.м., при котором обеспечивается минимально-допустимый запас центровки, называется предельно задней центровкой . При такой центровке самолет еще обладает устойчивостью, обеспечивающей безопасность полета. Разумеется, что задняя
эксплуатационная центровка должна быть меньше предельно допустимой.

Допустимое смещение ц.м. самолета вперед определяется по условиям балансировки самолета.
Наихудшим в смысле балансировки является режим захода на посадку при малых скоростях, предельно допустимых углах атаки и выпущенной механизации.
Поэтому предельно передняя центровка определяется из условия обеспечения балансировки самолета на посадочном режиме.

Для неманевренных самолетов величина запаса центровки должна составлять 10–12% САХ.

При переходе с дозвуковых режимов на сверхзвуковые фокус самолета смещается назад, запас центровки увеличивается в несколько раз и продольная статическая устойчивость резко возрастает.

Балансировочные кривые

Величина продольного момента М z , возникающего при нарушении продольного равновесия, зависит от изменения угла атаки Δα. Эта зависимость называется балансировочной кривой .


Мz

Рис. 6.5. Балансировочные кривые:

а) устойчивый самолет, б) безразличный самолет,
в) неустойчивый самолет

Угол атаки, при котором M z = 0, называется балансировочным углом атаки α .

На балансировочном угле атаки самолёт находится в состоянии продольного равновесия.

На углах устойчивый самолет создает стабилизирующий момент - (момент пикирования), неустойчивый – дестабилизирующий + , безразличный самолет не создает , т.е. имеет множество балансировочных углов атаки.

Путевая устойчивость самолета

Путевая (флюгерная) устойчивость – это способность самолета без вмешательства пилота устранять скольжение, т. е. устанавливаться «против потока», сохраняя заданное направление движения.

Рис. 6.6. Путевая устойчивость самолета

Обеспечивается путевая устойчивость соответствующими размерами вертикального оперения S в.о.
и плечом вертикального оперения L в.о, т.е. расстоянием от центра давления в.о. до центра масс самолета.

Под действием М возм самолет вращается вокруг оси OY, но его ц.м. по инерции сохраняет еще направление движения и самолет обтекается потоком под
углом скольжения β. В результате несимметричного обтекания возникает боковая сила Z, приложенная
в боковом фокусе. Самолет под действием силы Z стремится развернуться подобно флюгеру в сторону крыла, на которое он скользит.

В.о. смещает боковой фокус за ц.м. самолета. Этим обеспечивается создание стабилизирующего путевого момента ΔM Y =Zb.

Степень путевой статической устойчивости определяется величиной производной коэффициента момента рысканья по углу скольжения m .

Физически m определяет величину прироста коэффициента момента рысканья, если угол скольжения изменяется на 1 .

У самолета, обладающего путевой устойчивостью он отрицателен. Таким образом, при скольжении на правое крыло (положительное ), появляется путевой момент, вращающий самолет вправо, т.е. коэффициент m отрицательный.

Изменение угла атаки, выпуск механизации незначительно влияют на путевую устойчивость. В диапазоне чисел М от 0,2 до 0,9 степень путевой устойчивости практически не меняется.

Дают довольно заумное определение:

«Сверхманёвренность: способность самолета сохранять устойчивость и управляемость на закритических углах атаки, обеспечивающая безопасность боевого маневрирования; способность самолета к изменению положения относительно потока, позволяющая наводить оружие на цель вне вектора текущей траектории».

Но не будем заморачиваться теорией, просто скажем, что визуально это выглядит так, будто самолёт способен крутиться вокруг собственной «пятой точки» (на самом деле - вокруг центра масс). Если петля Нестерова - это фигура довольно большого радиуса, то кувырок «на одном месте» уже петлёй не назовёшь.

Зачем же она нужна? Во-первых, в ближнем бою успеть прицелиться первым, а значит - победить. Или наоборот, суметь уйти от насевшего на тебя противника. Во-вторых, суметь увернуться от пущенной в тебя ракеты противника. В-третьих - обмануть вражеские локаторы. Если самолёт сбросит скорость почти до нуля, локатор его потеряет.

А что нужно для достижения сверхманёвренности? Требований много. Нужно снизить устойчивость самолёта до нулевой или даже отрицательной. При этом управлять им вручную, когда органы управления связаны напрямую с рулями, становится невозможно. Управление берёт на себя автоматика, а лётчик, грубо говоря, только приказывает ей, что делать.

Нужно увеличить тягу двигателей настолько, чтобы она превышала вес самолёта. В таком случае говорят, что удельная тяга больше единицы.

Нужно, чтобы двигатели «хорошо себя чувствовали» на больших углах атаки. Реактивный двигатель - очень сложная и требовательная штука. Ему для работы нужен строго определённый поток воздуха, и он регулируется специальными устройствами. На МиГ-21, к примеру, это конус зелёного цвета в носовой части. Он может двигаться вперёд и назад, регулируя поток воздуха в двигатель. Разумеется, автоматически, лётчик этим не заморачивается.

Но если угол атаки превысит критический, то поток воздуха в двигатель нарушится, а это очень неприятный и опасный режим, вот за этим лётчику приходилось следить.

«"Никогда не забуду первый демонстрационный полет Су-27 в Париже, устроенный "Бритиш Аэроспейс" (British Аerospace) вместе с конструкторами и летчиками-испытателями "ОКБ Сухого", - таковы впечатления от "премьеры" истребителя у летчика британских ВВС Джона Фарлайта. - Виктор Пугачев делал вираж на Су-27 в 360 градусов за 10 секунд, средняя скорость на вираже - 36 градусов/с. А мы тогда лишь надеялись, что наш истребитель следующего поколения сможет достигнуть 25 градусов/с. Это та скорость, с которой пилот способен развернуть самолет, чтобы весь комплекс вооружения был готов к атаке.

Если предположить, что наша новая машина встретится в бою с Су-27, через 10 секунд ей останется, притом, если очень повезет, выпустить шасси и сесть.

Многое увиденное нами на авиашоу может быть использовано боевым самолетом в реальном воздушном бою. Для обыкновенного зрителя аэрошоу лишь поверхностное действие, но если вы принадлежите к специалистам авиационной промышленности, то по маневрированию боевых машин вполне определите пределы, в которых может пилотировать самолет.

И естественно, когда видите, что для Су-27 пределов нет, или что самолет идет на вертикаль, доходит до остановки, падает обратно вниз, выходит в нормальный полет и делает это не раз и не два, а раз за разом, то понимаете, что это не исключение, не трюк, а норма. Сложность данного маневра не в том, как войти в режим, а как выйти из него.

Обычно нам не разрешается превышать углы атаки 20-25 градусов: если превысить - теряем управление машиной... Но русские выполняют свои маневры, изменяя угол атаки в большом диапазоне, при этом оставаясь уверенными в управлении самолетом с абсолютно симметричным обтеканием. То же самое касается двигателей. Западные двигатели "страдают" строгими ограничениями по углам атаки. В полете на наших истребителях приходится думать одновременно и о маневрах противника, и о собственных ограничениях с аэродинамической точки зрения - о том, чего не должен делать летчик. Разумеется, такая ситуация не слишком комфортна для летчика, для него гораздо легче, когда можно делать все что угодно, чтобы суметь нацелиться на противника и преследовать его. То, чего добились русские, поразило нас до глубины души". Су-27 своими революционными дизайном и аэродинамикой установил новые стандарты в производстве истребителей».

А американский лётчик-испытатель, которому посчастливилось полетать на Су-27 с Анатолием Квочуром, пишет о манёвре «Кобра» :

«Желая увидеть всё, что возможно, я дал знать Квочуру, что хочу, чтобы он показал что-нибудь из его программы на Су-27. Он взял управление, как маэстро принимает инструмент. Моё пиликание на скрипочке превратилось в концерт для виолончели. Его вводы были обычно плавны и продуманны. Самолёт отвечал на них, как мурлыкающая кошка… …Несмотря на радикальное изменение углов тангажа, весь манёвр прошёл при перегрузке, не превышающей 3-х G. Двигатели вели себя очень достойно, несмотря на, казалось бы, самоубийственное обращение с ними. Во время всего манёвра не было даже малейшего намёка на потерю управляемости».

Но критическими углы атаки бывают не только для двигателя, но и для крыла, как видно из приведённых цитат. Срыв обтекающего потока может испортить всю малину. И вот тут помогает так называемая «вихревая аэродинамика». Явление это обнаружили давно, ещё в 60-х годах, на МиГ-25, когда заметили, что его верхняя «губа» воздухозаборника создаёт вихрь на верхней поверхности фюзеляжа, и этот вихрь увеличивает подъёмную силу на больших углах атаки. Кстати говоря, эти же вихри "затеняли" киль, который оказывался в малоэнергичном потоке между ними. Отсюда и сохранившиеся в последующих машинах два киля.

Потом, чуть позже, в то время, когда создавали сверхзвуковой пассажирский Ту-144, испытывали свойство крыла «оживальной» формы на специально переделанном МиГ-21.

Там этот эффект проявился ещё явственнее. Разумеется, конструкторы КБ МиГ не могли пройти мимо такого явления, и совместно с ЦАГИ оно было досконально исследовано.

Лирическое отступление. ЦАГИ - это Центральный аэрогидродинамический институт, основан ещё в 1918 году профессором Н.Е. Жуковским, всего лишь через год после революции. Авиации уделяли большое внимание, кроме ЦАГИ были и есть и другие институты.

ЦИАМ - Центральный институт авиационного моторостроения основан в 1930 году.

ВИАМ - Всесоюзный научно-исследовательский институт авиационных материалов, основан в 1932 году.

ЦИАТИМ - Центральный институт авиационных топлив и масел. Знакомое название, правда? Основан в 1934 году.

Со стороны ЦАГИ работой руководил академик Георгий Сергеевич Бюшгенс. Можно при желании почитать его рассказ об этом.

Лирическое отступление. Обратите внимание, чем умнее учёный, тем более простым языком он может объяснять сложные явления. В отличие от интернет-хомячков, которые норовят казаться умными, перегружая язык терминологией, особенно английской, аббревиатурами и т.д. Куда ни шло в интернете, но особенно меня смешат некоторые распальцованные ведущие украинских автомобильных телепередач, которые немецкую фирму BMW (бэ-эм-вэ) с апломбом называют на «английский» якобы манер (би-эм-ви). Так и хочется сказать: парень, возвращался бы ты в свою деревню:)

Но был и ещё один, даже более важный фактор, заставивший заняться проблемой сверхманёвренности. Я сейчас приведу одну цитату, убрав ключевые слова, а вы попробуйте угадать, о какой машине идёт речь.

"... быстро поняли, что на... можно делать буквально все, не опасаясь сваливания, потому что в устойчивый штопор загнать... затруднительно, а из сваливания он выходит запросто, летали на малых скоростях, теряли скорость до «нуля», падали и на хвост, и «листом». К тому же двигатель... работал устойчиво на всех «экзотических» режимах полета".

Угадали? Думаете, МиГ-29? Нет, это - МиГ-21. И пишет это лётчик-испытатель Борис Орлов о сирийских лётчиках, которые в начале 70-х воевали с Израилем. Так летать их заставила война, то есть, это был бесценный боевой опыт, игнорировать который было бы неразумно.

Командировка Б.А. Орлова в Сирию была связана с претензиями сирийцев на участившиеся случаи разрушения двигателя. Оказалось, что сирийцы нарушали ограничения, указанные в руководстве по лётной эксплуатации (РЛЭ) на МиГ-21. Но ведь заставила их нарушать жизнь, а не блажь:

"Инструкция по летной эксплуатации ограничивала минимальную скорость полета, но когда мы указали на это сирийским летчикам, они резонно заметили, что им не до инструкций, если на хвост сел «Мираж», а летчик МиГа знает, что может затянуть противника на такой режим, где тот попросту упадет..."

А с одним из сирийских лётчиков удалось полетать на спарке:

Начался наш полет с того, что мой Абдель сразу после взлета, не успев убрать шасси, плавно потянул на полупетлю. Самолет не очень охотно шел вверх, заметно теряя скорость. На высоте около 1000 м мы, наконец, легли на спину; стрелка приборной скорости, уползшая влево до 150 км/ч, потихоньку пошла вправо. Но самолет спокойно летел, не трясся, не выворачивался, летчик уверенно контролировал машину. Набрав нормальную скорость, он перевернул самолет со спины в обычное положение, и мы пошли в пилотажную зону.

Что бы летчик ни делал: виражи на скорости 230—240 км/ч (это при посадочной скорости 300-320 км/ч - В.З.) , зависание до нулевой скорости, энергичный маневр типа «хай джи ролл» («бочка» с высокой перегрузкой) — все время ощущалась его мгновенная реакция на поведение самолета, движения рулями были точными и координированными, особенно была заметна энергичная и четкая работа ног, почти не применяемая в практике наших строевых, да и не только строевых, летчиков".

Отсюда - сделали справедливый вывод:

"...если уж самолет позволяет делать все, что может пригодиться в бою, то и его двигатель должен терпеть все..."

На самом деле:

"Можно сказать, что сирийцы владели МиГом, как «волк зубами» , и не боялись ни «Фантомов», ни «Миражей», зная, что эти машины весьма строги в пилотировании, а у «Миража» еще и двигатель помпирует при небольшом скольжении на довольно умеренном угле атаки...

Возвращаясь к теме, подводим итог: вихревая аэродинамика в СССР - заслуга ОКБ МиГ совместно с ЦАГИ. Вот результат, на котором сами вихри, благодаря лёгкому туману в воздухе, очень хорошо видно:

А впоследствии ко всем этим особенностям добавили ещё и управляемый вектор тяги двигателей, что ещё улучшило возможности самолёта. Смотрим видео с возможностями МиГа:

Прототип Су-27 взлетел чуть раньше МиГ-29, но оказался неудачным, и его пришлось полностью переработать по образу и подобию МиГ-29.

Зато результат потом оказался столь же успешным, и настолько впечатлил, в том числе и американцев, что они сняли фильм, в превосходных тонах освещающий Су-37 в сравнении даже с их Ф-22:

Лирическое отступление. Нужно сказать, что Су-37 (он же Т10М-11, он же борт 711, он же "Терминатор") - экспериментальный самолёт, сделанный в двух экземплярах. Он близок к Су-30 и новейшему Су-35. Двигатели с управляемым вектором тяги в нём были опытными, с сильно ограниченным ресурсом. И когда ресурс кончился, их поменяли на обычные, поменяв заодно и название самолёта на Су-35.

С названиями в КБ Сухого традиционно обращаются очень вольно. Скажем, были когда-то в 40-х годах самолёты Су-7 и Су-9. А потом, в 50-х - 60-х появились совершенно другие, но с теми же названиями.

Первый Су-9

Второй Су-9. Как видим, ничего общего.

Зачем это нужно было? Загадка. Ничего кроме секретности в голову не приходит.

Или семейство Су-27. Заводское обозначение его - Т-10, в зависимости от модификации к нему могут добавляться какие-то буквы. Официально - Су-27, тоже может быть с дополнительными буквами. И он же, к примеру, Су-33. Итого, у одного самолёта три названия.

Ещё хитрее вышло с Су-35. Новому, максимально приближенному к пятому поколению истребителю, не стали присваивать новый индекс, а назвали его Су-35БМ (Большая Модернизация). Хороша модернизация, когда поменяли практически всё! А в серию он пошёл под именем Су-35С.

Кроме того, истребители в СССР традиционно именовались нечётными числами: Як-1, Як-3, Як-7 и т.д. Су-30 - истребитель, но где же нечётность? Вся эта путаница однажды вызвала тяжёлый вздох в американском авиационном журнале: «Система обозначений самолётов КБ Сухого приводит в ужас буржуазных аналитиков».

Ну и ещё одно коротенькое видео. Там примерно то же самое, что и в предыдущих двух, но уж очень красиво смонтировано и наложено на музыку:

А на этом видео прекрасно видны вихри:

Топ Ган

Должен сказать, что вихревая аэродинамика известна и в других странах, в том числе, разумеется, и в США. Это видно по формам F-16, F-18 и F-22, к примеру. Началось у них, вероятно, со знаменитого "Чёрного дрозда", у которого появились наплывы на крыле, хотя ни о какой манёвренности этого сверхскоростного разведчика говорить не приходилось.

Фото strangecosmos.com

Потом корневой наплыв появился и на маленьком, разработанном на базе учебно-тренировочного "Тэлона", F-5 «Фридом Файтер»/«Тайгер» II. Говорят, наши аэродинамики заметили этот наплыв и анализировали его свойства:

Фото militaryfactory.com

И, наконец, явные вихри на новых самолётах:

Американский палубный истребитель-бомбардировщик и штурмовик Макдоннел-Дуглас F/A-18 «Шершень». Фото http://bigpicture.ru/

Тем более что многие работы и научные исследования такого уровня не являются секретными, вспомним теорию Уфимцева. Более того, скажем, советские разработчики Ту-144 свободно обменивались опытом с французскими разработчиками «Конкорда» в процессе разработки. Это в адрес любителей порассуждать, кто у кого "слизал". И я не собираюсь утверждать что либо о приоритетах в области вихревой аэродинамики, не знаю, просто рассказал, как это было в нашей стране.

Собственно говоря, борьба за манёвренность никогда не прекращалась, и шла она с переменным успехом. Замечу, что даже если противник знает все тактико-технические данные самолётов противника - скорость, вооружение, потолок и т.д. - это очень мало для того, чтобы разработать тактику боёв с ними. Нужно знать множество достоинств и недостатков самолёта для разработки рекомендаций своим лётчикам: чего следует опасаться или избегать в бою, а к чему стремиться. Ниже остановимся на этом подробнее, а пока скажу, что именно поэтому сравнение самолётов по характеристикам имеет мало смысла. Как говорится, практика - критерий истины, и бывали случаи, когда маленький и слабо вооружённый МиГ-21 второго поколения побеждал такую зверюку четвёртого поколения как F-15. Впрочем, как и наоборот, разумеется.

А потому американцы, начиная с войны в Корее, норовили раздобыть образцы советских истребителей для испытаний. Даже разбрасывали над Северной Кореей листовки с обещанием выплатить 100 тысяч долларов тому, кто перегонит им МиГ-15. И такой лётчик, хоть и не сразу, но нашёлся. Просто его мама осталась в Южной Корее... Надо сказать, что судьба его сложилась успешно, а вот пятеро оставшихся его друзей, говорят, были расстреляны.

МиГ испытали, пришли к выводу, что с "Сейбром" они примерно равны по боевой эффективности. Но когда этот приём повторили во Вьетнамской войне, пообещав ту же сумму за МиГ-21, желающих так и не нашлось. А ведь потери у американцев, по их же официальным данным, составляли от 2,5:1 до 2,75:1, то есть, несмотря на изрядное численное преимущество, на 2-3 сбитых вьетнамских самолёта приходился один американский. Именно тогда в ВМС США возникла идея создать Центр боевой подготовки лётчиков-истребителей "Топ Ган". Те, кто видел одноимённый фильм, примерно представляют, о чём речь. Появились эскадрильи "агрессоров", учения "Рэд флэг" и т.п. Правда, к концу вьетнамской войны соотношение побед стало не 12:1, как говорится в фильме, а 8,3:1, но и это немало. В ВВС США, где такого центра не было, соотношение стало 2,8:1, то есть, почти не изменилось. Добавлю: на то, чтобы "пробить" у начальства идею создания этого центра, ушло почти 10 лет, так что сопротивление чинуш приходится преодолевать не только у нас.

Впервые МиГ-21 попал в США из Израиля, когда МОССАД выманил иракского лётчика. Прежде всего, самолёт нужно было испытать, ведь не то что руководства по лётной эксплуатации не было, но даже все надписи органов управления на непонятной кириллице:) Да и те с сокращениями. Попробуйте понять, особенно, будучи англоязычным, что такое "КСИ", "АРК БПРС" или хотя бы "анти-обл." :) А подобных надписей сотни.

Встречались как-то воспоминания американского лётчика-испытателя, который испытывал советский боевой вертолёт, захваченный в Афганистане и отремонтированный. Он рассказывал, как лепили наклейки с надписями на каждом тумблере, как долго пытались понять назначение оборудования. В конце концов, вертолёт он освоил, и даже влюбился в него, считая его лучшим из всего, на чём он летал. Но посетовал, что зависать на одном месте вертолёт этот, увы, не может. Наши лётчики с форума, почитав это, лишь плечами пожали: прекрасно висит... Предположили, что на наших вертолётах несущий винт крутится, в отличие от американских, в другую сторону, и движения органами управления несколько отличаются. Но тут не знаю - не лётчик. Это я лишь к тому, как сложно освоить такую технику без инструкций...

Оценили американские испытатели МиГ-21 очень высоко:

"МиГ-21 - суперсамолёт. Смотрится отлично и летает великолепно. Даже при перегрузке 7g ты чувствуешь себя комфортно. Посадка на нём мало отличается от посадки на F-5, что упрощает переучивание. Он быстрее, чем МиГ-17Ф, а обзор из кабины ничуть не хуже".

Отмечали высокую угловую скорость крена и великолепную горизонтальную манёвренность, в которой с МиГом вплоть до появления F-16 не мог сравниться ни один истребитель США, включая F-5. Лётчики выполняли виражи на скоростях порядка 160 км/час, при этом ни разу не отмечалось случаев помпажа двигателя и сваливания. Вспоминаем сирийских лётчиков из рассказа выше:)

Из недостатков упомянули плохой обзор из кабины, невысокую приёмистость двигателя и мелочи вроде тусклых навигационных огней. МиГ превосходил и Фантомы, и Тандерчифы на виражах, но уступал на вертикалях. Лётчикам рекомендовали избегать манёвренных боёв с МиГ-21 и боёв на малых высотах и скоростях менее 830 км/час, отметив даже большими буквами: "Скорость - это жизнь". Опять вспоминаем сирийских лётчиков и убеждаемся, что американцы не врут:) Оказалось также, что приёмник предупреждения об облучении на F-105 почти не чувствовал излучения РЛС МиГа, так что вертеть головой приходилось самому. Испытали МиГ-21 и с другими типами самолётов, и хотя отличия имелись, но не слишком значительные.

Цитата из источника, указанного в конце статьи:

"Последний вылет в 4477 Майо сделал в паре с Малером против двух F-15: "Кто выиграл? Мы, конечно!" Сложно сейчас сказать, кривил душой Майо или нет? Результаты боёв говорили о полном превосходстве F-15 над МиГ-17 и МиГ-21, что неудивительно. Впрочем, лётчики 4477 нашли уязвимое место F-15. Если F-15 не "сбивал" МиГ в первой атаке, то МиГ вполне мог оторваться от "Игла" и навязать последнему бой на выгодных для себя условиях: МиГ-17 на виражах, а МиГ-21 за счёт высоких разгонных характеристик, в которых он не уступал F-15".

..."красные орлы" нередко брали верх над F-15 за счёт резкого торможения на вираже, после чего неспособный повторить такой манёвр атакующий "Игл" проскакивал вперёд, подставляя хвост под ракеты и пушки МиГа: "На скорости порядка 900 км/час меньше чем за половину виража я терял 180 км/час - ни один истребитель в мире, кроме МиГ-21, не способен сделать подобного".

"Включаю форсаж, выпускаю закрылки и ставлю самолёт "на хвост". Скорость падает до 170 км/час. Затем опускаю нос и ухожу на солнце. Вираж, и я захожу в хвост противнику. Мы рассказывали лётчикам F-15 о таком манёвре на предполётной подготовке. Они никогда не верили в возможность его осуществления. Зря не верили".

Уступал МиГу и здоровенный F-14, несмотря на крыло с изменяемой геометрией. Да и тяговооружённость Томкэта была слабоватой. Потому рекомендации были те же: ни в коем случае не ввязываться в ближний бой.

Затем в Израиль случайно залетели два МиГ-17 из Сирии. По официальной версии, лётчики заблудились. Отчёт по нему тоже весьма интересен:

"МиГ-17 обладает значительным преимуществом перед современными истребителями в малоскоростных ближних боях, общеизвестных как "схватка на ножах" (Knife Fight), пушечное вооружение МиГа намного более эффективно в ближнем бою.

МиГ-17 способен уничтожить любой тактический самолёт авиации ВМС США в воздушном бою на виражах, ведущемся на скоростях 880 км/час и ниже.

Самолёт прост и надёжен, не сваливается при брошенной ручке управления, обслуживание требует минимального количества специального оборудования.

Вооружение не отказывало ни разу. За счёт палетизированной установки пушек пополнение боекомплекта занимает всего 20 минут".

Хотя отметили малую скорострельность пушек и низкую начальную скорость снаряда. Видимо, при калибре 37 мм на таком маленьком самолёте иного и ожидать было нельзя:) Сравнительные бои проводили с F-4 "Фантом" II, F-105 "Тандерчиф", F-100 "Супер Сейбр" и F-5. Выводы похожи: на высоте менее 3 км эффективность РЛС и ракет Фантома недостаточна, на горизонталях у МиГа абсолютное превосходство над всеми перечисленными типами истребителей, а на вертикалях, особенно на высоких скоростях (от 830 км/час) превосходство - у американских машин. Кроме того, МиГ трудно обнаружить в воздухе визуально, а двигатель его "вообще не дымит", особенно по сравнению с чадящим Фантомом. МиГ-17 получил характеристику "Экстремально надёжный самолёт".

Выводы сделали в пользу установки пушек на всех перспективных американских самолётах. Как видим, даже на Ф-22 установили:) Рекомендовали снижать трудоёмкость обслуживания и упрощать бортовые системы, особенно электронные.

Одной из проблем было, конечно "добывание" самолётов. Израильские МиГи пришлось вернуть, а в ход шли и китайские копии МиГов, и индонезийские самолёты, после того как в Индонезии не без помощи ЦРУ поменялось правительство, и т.д. Жаловались, что индонезийские МиГи были по самый фонарь кабины в грязи, и из четырёх истребителей удавалось собрать лишь один годный. Были и неожиданные "подарки", например, МиГ-25, угнанный предателем Беленко в Японию.

Любопытно, что само по себе появление советских самолётов с красными звёздами в небе США чисто психологически вгоняло в ступор даже опытных лётчиков, хотя они прекрасно знали, что это и откуда: "Впервые увидев рядом МиГ, я прекратил управлять самолётом!" Нужно ли говорить, что секундное замешательство может стоить жизни? "Вместо того чтобы уйти на скорости на вертикаль, я стал с ним крутить виражи. Он прилип ко мне, словно жвачка к подошве ботинка. Я не смог его стряхнуть. Он выжал из меня все соки. Я чувствовал себя полным остолопом. Потом мне многие рассказывали об аналогичных ощущениях".

Как видим, во вьетнамской войне лёгкие МиГ-15 и МиГ-21 превосходили по манёвренности тяжёлые американские машины, вывод из этого со стороны США - создание F-15 и особенно F-16, наш ответ - МиГ-29 и Су-27. Американцы исследовали и управляемый вектор тяги, и многое другое. Но затем последовал "асимметричный ответ" - малозаметность F-22 с надеждой, что хоть для наземных и даже для бортовых РЛС это и не ахти какая проблема, но вот пущенная в тебя ракета может тебя и потерять. Или же на борту одноразовой по определению ракеты нужно тратиться на дорогую многоканальную электронику. Хотя, если учесть, что одна ракета средней дальности и без того стОит больше миллиона долларов, то... поживём - увидим, что будет дальше.

Добавлю справедливости ради, что F-22, несмотря на все его проблемы и недостатки, далеко не "фейк". Полагаю, никто не сомневается в качестве американских двигателей. Аэродинамика Рэптора, с поправкой на жёсткие требования к малозаметности, проработана хорошо, это говорят и наши специалисты. В общем, выражаясь словами Аркадия Райкина, "к пуговицам претензий нет". Почему его преследуют неудачи - другой вопрос, мы его уже рассматривали. Полагаю, что у него есть все шансы стать действительно отличным истребителем, но для этого нужны мозги, деньги и воля. Найдутся ли? Не знаю.

Было ли в СССР что-то подобное Топ Ган? В таком же виде - очень вряд ли, хотя бы из-за той же проблемы "добывания" в нужном количестве самолётов потенциального противника. Хотя Центры боевого применения были и есть, и даже не один. О генерале Харчевском из Липецкого Центра вспоминал уже не раз. Точно знаю, что как зарубежное оборудование, так и самолёты целиком, хотя бы сбитые, изучались весьма и весьма внимательно. Как с точки зрения технологий, так и боевого противодействия. Думаю, что при нечастых появлениях зарубежных самолётов (а в наши руки попадали в рабочем состоянии и Сейбр, и Фантом, и Тайгер...), ограничивались их испытаниями силами лётчиков-испытателей, а в полки передавались рекомендации, как воевать с тем или иным типом самолёта. Одну такую книгу с грифом "Секретно" подглядел сам в полку. К сожалению, тип самолёта разглядеть не удалось:) Тема зарубежных истребителей, попавших в СССР, ещё ждёт своих исследователей.

The Soviets made good use of sample Iranian Grumman F-14A Tomcats and their AN/AWG-9/AIM-54A weapon system. Фото: http://www.ausairpower.net/APA-Flanker.html

Вероятно, самый загадочный случай перелёта американца в СССР описан в статье " ", довольно широко разлетевшимся по Сети. Мнения специалистов (типа верю - не верю) разделились почти поровну, впрочем, мнений типа "Красивая сказка" всё-таки, наверное, чуть больше. Хотя большинство сходится в одном: "агромный спасиб за нажористый материал! Прочитал без перерыва на туалет)))" :)

Благодарю за помощь в написании статьи инженера-испытателя ОКБ им. Микояна, камрада http://fan-d-or.livejournal.com/ . По этой ссылке можно найти много интересного и о вихревой аэродинамике, и об авиации вообще, и не только об авиации.

Реактивными двигателями называют такие устройства, которые создают нужную для процесса движения силу тяги преобразованием внутренней энергии горючего в кинетическую энергию реактивных струй в рабочем теле. Рабочее тело стремительно проистекает из двигателя, и по закону сохранения импульса формируется реактивная сила, которая толкает двигатель в противолежащем направлении. Чтобы разогнать рабочее тело может применяться как расширение газов, нагретых самыми разнообразными способами до высоких температур, а также и другими физическими процессами, в частности, ускорением заряженных частиц в электростатическом поле.

Реактивные двигатели сочетают в себе собственно двигатели с движителями. Имеется в виду, что они создают тяговые усилия исключительно взаимодействием с рабочими телами, без опор, либо контактами с остальными телами. То есть обеспечивают сами себе собственное продвижение, при этом промежуточные механизмы не принимают никакого участия. Вследствие этого в основном они используются для того, чтобы приводить в движение воздушные судна, ракеты и, конечно же, космические аппараты.

Что такое тяга двигателя?

Тягой двигателей называют реактивную силу, которая проявляется газодинамическими силами, давлением и трением, приложенными к внутренним и внешним сторонам двигателя.

Тяги различаются на:

  • Внутренние (реактивные тяги), когда не учитывается внешнее сопротивление;
  • Эффективные, учитывающие внешнее сопротивление силовых установок.

Отправная энергия запасается на борту летательных или других аппаратов, оснащенных реактивными двигателями (химическим горючим, ядерным топливом), или может притекать снаружи (например, солнечная энергия).

Как формируется реактивная тяга?

Для формирования реактивной тяги (тяги двигателя), которая используется реактивными двигателями, потребуются:

  • Источники исходной энергии, которые превращаются в кинетическую энергию реактивных струй;
  • Рабочие тела, которые в качестве реактивных струй будут выбрасываться из реактивных двигателей;
  • Сам реактивный двигатель в качестве преобразователя энергии.

Как получить рабочее тело?

Для приобретения рабочего тела в реактивных двигателях могут использоваться:

  • Вещества, отбираемые из окружающей среды (к примеру, вода, либо воздух);
  • Вещества, находящиеся в баках аппаратов или в камерах реактивных двигателей;
  • Смешанные вещества, поступающие из окружающей среды и запасаемые на бортах аппаратов.

Современные реактивные двигатели главным образом используют химическую энергию. Рабочие тела представляют собой смесь раскаленных газов, которые являются продуктами сгорания химического горючего. Когда работает реактивный двигатель, химическая энергия от сгорающих веществ преобразуется в тепловую энергию от продуктов сгорания. В то же время тепловая энергия от горячих газов превращается в механическую энергию от поступательных движений реактивных струй и аппаратов, на которых установлены двигатели.

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.

Кратко об истории реактивного двигателя

Считается, что реактивный двигатель изобрели Ганс фон Охайн и выдающийся немецкий инженер-конструктор Фрэнк Виттл. Первый патент на действующий газотурбинный двигатель получил именно Фрэнк Виттл в 1930 году. Тем не менее, первая рабочая модель была собрана собственно Охайном. В конце лета 1939 года в небе появилось первое реактивное воздушное судно – He-178 (Хейнкель-178), который был снаряжен двигателем HeS 3, разработанным Охайном.

Как устроен реактивный двигатель?

Устройство реактивных двигателей довольно-таки простое и в то же время чрезвычайно сложное. Оно простое по принципу действия. Так, забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину. После чего он там начинает смешиваться с горючим и сгорать. На краю турбины образуется так называемое «рабочее тело» (ранее упоминаемая реактивная струя), которое продвигает летательный или космический аппарат.

При всей простоте, на самом деле это целая наука, ведь в середине таких двигателей рабочий температурный режим может достигать более тысячи градусов по Цельсию. Одной из важнейших проблем в турбореактивном двигателестроении является создание неплавящихся деталей из металлов, которые сами поддаются плавлению.

В начале, перед каждой турбиной всегда располагается вентилятор, засасывающий воздушные массы из окружающей среды в турбины. Вентиляторы обладают большой площадью, а также колоссальной численностью лопастей специальных конфигураций, материалом для которых послужил титан. Сразу за вентиляторами располагаются мощные компрессоры, которые необходимы для нагнетания воздуха под огромным давлением в камеры сгорания. После камер сгорания горящие топливовоздушные смеси направляются в саму турбину.

Турбины состоят из множества лопаток, на которые оказывают давление реактивные потоки, которые и приводят турбины во вращение. Далее турбины вращают валы, на которых «насажены» вентиляторы и компрессоры. Собственно так, система становится замкнутой и нуждается исключительно в подводе топлива и воздушных масс.

Вслед за турбинами потоки направляются в сопла. Сопла реактивных двигателей являются последними, но не самыми последними по своей значимости частями в реактивных двигателях. Они формируют непосредственные реактивные струи. В сопла направляются холодные воздушные массы, нагнетаемые вентиляторами для охлаждения «внутренностей» двигателей. Эти потоки ограничивают манжеты сопел от сверхгорячих реактивных потоков и не позволяют им расплавляться.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.

Типы реактивных двигателей

Имеется несколько основных разновидностей реактивных двигателей. Так, классическим реактивным двигателем можно назвать авиадвигатель в самолете F-15. Большинство таких двигателей используются преимущественно на истребителях самых разнообразных модификаций.

Двухлопастные турбовинтовые двигатели

В этой разновидности турбовинтовых двигателей мощность турбин через понижающие редукторы направляется для вращения классических винтов. Наличие таких двигателей позволяет большим воздушным суднам осуществлять полеты с максимально приемлемыми скоростями и при этом расходовать меньшее количество авиатоплива. Нормальная крейсерская скорость у турбовинтовых воздушных суден может быть 600-800 км/ч.

Турбовентиляторные реактивные двигатели

Эта разновидность двигателей является более экономичной в семействе двигателей классических типов. Главной отличительной характеристикой в них является то, что на входе ставятся вентиляторы больших диаметров, которые подают воздушные потоки не только для турбин, но и создают довольно-таки мощные потоки вне их. Вследствие этого, можно достичь повышенной экономичности, путем усовершенствования КПД. Они используются на лайнерах и больших воздушных суднах.

Прямоточные воздушно-реактивные двигатели

Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.

Маневренностью самолета называется его способность изменять вектор скорости полета по величине и направлению.

Маневренные свойства реализуются летчиком при боевом маневрировании, которое состоит из отдельных законченных или незаконченных фигур пилотажа, непрерывно следующих друг за другом.

Маневренность является одним из важнейших качеств боевого самолета любого рода авиации. Она позволяет успешно вести воздушный бой, преодолевать ПВО противника, атаковать наземные цели, строить, перестраивать и распускать боевой порядок (строй) самолетов, выводить на объект в заданное время и т. д.

Особое и, можно сказать, решающее значение имеет маневренность для фронтового истребителя, ведущего воздушный бой с истербителем (истребителем-бомбардировщиком) противника. Действительно, заняв выгодное тактическое положение по отношению к противнику, можно его сбить одной-двумя ракетами или огнем даже из единственной пушки. Наоборот, если выгодное положение займет противник (например, «повиснет на хвосте»), то в такой ситуации не поможет любое количество ракет и пушек. Высокая маневренность позволяет также производить успешный выход из воздушного боя и отрыв от противника.

ПОКАЗАТЕЛИ МАНЕВРЕННОСТИ

В самом общем случае маневренность самолета можно полностью охарактеризовать секундным векторным приращением скорости. Пусть в начальный момент времени величина и направление скорости самолета изображается вектором V1 (рис. 1), а через одну секунду - вектором V2; тогда V2=V1+ΔV, где ΔV - секундное векторное приращение скорости.

Рис. 1. Секундное векторное приращение скорости

На рис. 2 изображена область возможных секундных векторных приращений скорости для некоторого самолета при его маневре в горизонтальной плоскости. Физический смысл графика состоит в том, что через одну секунду конца векторов ΔV и V2 могут оказаться только внутри области, ограниченной линией а-б-в-г-д-е. При располагаемой тяге двигателей Рр конец вектора ΔV может оказаться только на границе а-б-в-г, на которой можно отметить следующие возможные варианты маневрирования:

  • а - разгон по прямой,
  • б - разворот с разгоном,
  • в - установившийся разворот,
  • г - форсированный разворот с торможением.

При нулевой тяге и выпущенных тормозных щитках конец вектора ΔV может оказаться через секунду только на границе д-е, например, в точках:

  • д - энергичный разворот с торможением,
  • е - торможение по прямой.

При промежуточной тяге конец вектора ΔV может оказаться в любой точке между границами а-б-в-г и д-е. Отрезок г-д соответствует разворотам при Сyдоп с различной тягой.

Непонимание того факта, что маневренность определяется секундным векторным приращением скорости, т. е. величиной ΔV, иногда приводит к неправильной оценке того или иного самолета. Например, перед войной 1941-1945 гг. некоторые летчики считали, что наш старый истребитель И-16 обладал более высокими маневренными свойствами, чем новые самолеты Як-1, МиГ-3 и ЛаГГ-3. Однако в маневренных воздушных боях Як-1 проявил себя лучше, чем И-16. В чем дело? Оказывается, И-16 мог быстро «поворачиваться», но его секундные приращения ΔV были гораздо меньше, чем у Як-1 (рис. 3); т. е. фактически Як-1 обладал более высокими маневренными свойствами, если вопрос не рассматривать узко, с точки зрения только одной «поворотливости». Аналогично можно показать, что, например, самолет МиГ-21 маневреннее самолета МиГ-17.

Области возможных приращений ΔV (рис. 2 и 3) хорошо иллюстрируют физический смысл понятия маневренности, т. е. дают качественную картину явления, но не позволяют производить количественный анализ, для которого привлекаются различного рода частные и обобщенные показатели маневренности.

Секундное векторное приращение скорости ΔV связано с перегрузками следующей зависимостью:

За счет земного ускорения g все самолеты получают одинаковое приращение скорости ΔV (9,8 м/с², вертикально вниз). Боковая перегрузка nz при маневрировании обычно не используется, поэтому маневренность самолета полностью характеризуется двумя перегрузками - nx и ny (перегрузка - векторная величина, но в дальнейшем знак вектора «->» будет опускаться).

Перегрузки nх и nу являются, таким образом, общими показателями маневренности .

С этими перегрузками связаны все частные показатели:

  • rг - радиус разворота (виража) в горизонтальной плоскости;
  • wг - угловая скорость разворота в горизонтальной плоскости;
  • rв - радиус маневра в вертикальной плоскости;
  • время разворота на заданный угол;
  • wв - угловая скорость поворота траектории в вертикальной плоскости;
  • jx - ускорение в горизонтальном полете;
  • Vy - вертикальная скорость при установившемся подъеме;
  • Vyэ - скорость набора энергетической высоты и пр.

ПЕРЕГРУЗКИ

Нормальной перегрузкой ny называется отношение алгебраической суммы подъемной силы и вертикальной составляющей силы тяги (в поточной системе координат) к весу самолета:

Примечание 1. При движении по земле в создании нормальной перегрузки участвует и сила реакции земли.

Примечание 2. Самописцы САРПП регистрируют перегрузки в связанной системе координат, в которой

На самолетах обычной схемы величина Ру сравнительно мала и ею пренебрегают. Тогда нормальной перегрузкой будет отношение подъемной силы к весу самолета:

Располагаемой нормальной перегрузкой nyр называется наибольшая перегрузка, которую можно использовать в полете с соблюдением условий безопасности.

Если в последнюю формулу подставить располагаемый коэффициент подъемной силы Cyр, то полученная перегрузка и будет располагаемой.

nyр=Cyр*S*q/G (2)

В полете величина Cyр, как уже условились, может ограничиваться по сваливанию, тряске, подхвату (и тогда Cyр=Cyдоп) или по управляемости (и тогда Cyр=Cyf). Кроме того, величина nyр может ограничиваться по условиям прочности самолета, т. е. в любом случае nyр не может быть больше максимальной эксплуатационной перегрузки nyэ макс.

К названию перегрузки nyр иногда добавляют слово «кратковременная».

Используя формулу (2) и функцию Cyр(M) можно получить зависимость располагаемой перегрузки nyр от числа М и высоты полета, которая изображена графически на рис. 4 (пример). Заметим, что содержание рисунков 4,а и 4,6 совершенно одинаковое. Верхний график обычно используется для различных расчетов. Однако для летного состава удобнее график в координатах М-Н (нижний), на котором линии постоянных располагаемых перегрузок проведены прямо внутри диапазона высот и скоростей полета самолета. Проанализируем рис. 4,6.

Линия nyр=1, очевидно, является уже известной нам границей горизонтального полета. Линия nyр=7 является границей, правее и ниже которой может произойти превышение максимальной эксплуатационной перегрузки (в нашем примере nyэ макс=7).

Линии постоянных располагаемых перегрузок проходят таким образом, что nyp2/nyp1=p2/p1 т. е. между двумя любыми линиями разница в высоте такова, что отношение давлений равно отношению перегрузок.

Исходя из этого, располагаемую перегрузку можно найти, имея на диапазоне высот и скоростей только одну границу горизонтального полета.

Пусть, например, требуется определить nyр при М=1 и H=14 км (в точке А на рис. 4,6). Решение: находим высоту точки В (20 км) и давление на этой высоте (5760 Н/м2), а также давление на заданной высоте 14 км (14 750 Н/м2); искомая перегрузка в точке А будет nyр=14 750/5760 = 2,56.

Если известно, что график на рис. 4 построен для веса самолета G1 а нам требуется располагаемая перегрузка для веса G2, то пересчет производится по очевидной пропорции:

Вывод. Имея границу горизонтального полета (линию nyp1=1), построенную для веса G1, можно определить располагаемую перегрузку на любой высоте и скорости полета для любого веса G2, используя пропорцию

nyp2/nyp1=(p2/p1)*(G1/G2) (3)

Но в любом случае используемая в полете перегрузка не должна быть больше максимальной эксплуатационной. Строго говоря, для самолета, подверженного в полете большим деформациям, формула (3) не всегда справедлива. Однако к самолетам-истребителям это замечание обычно не относится. По величине nyp при самых энергичных неустановившихся маневрах можно определить такие частные характеристики маневренности самолета, как текущие радиусы rг и rв, текущие угловые скорости wг и wв.

Предельной по тяге нормальной перегрузкой nyпр называется такая наибольшая перегрузка, при которой лобовое сопротивление Q становится равным тяге Рр и при этом nx=0. К названию этой перегрузки иногда добавляют слово «длительная».

Вычисляется предельная по тяге перегрузка следующим образом:

  • для заданной высоты и числа М находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при nyпр имеем Pр=Q=Cx*S*q, откуда можно найти Сх;
  • из сетки поляр по известным М и Сx находим Су;
  • вычисляем подъемную силу Y=Су*S*q;
  • вычисляем перегрузку ny=Y/G, которая и будет предельной по тяге, так как при расчетах мы исходили из равенства Рр=Q.

Второй метод расчета применяется, когда поляры самолета есть квадратичные параболы и когда вместо этих поляр в описании самолета даются кривые Сх0(М) и А(М):

  • находим тягу Рр;
  • запишем Рр = Cр*S*q, где Ср коэффициент тяги;
  • по условию имеем Рр = Ср*S*q=Q=Cх*Q*S*q+(A*G²n²yпр)/(S*q), откуда:

Индуктивное сопротивление пропорционально квадрату перегрузки, т. е. Qи=Qи¹*ny² (где Qи¹ - индуктивное сопротивление при nу=1). Поэтому, исходя из равенства Рр=Qo+Qи, можно записать выражение для предельной перегрузки и в таком виде:

Зависимость предельной перегрузки от числа М и высоты полета изображена графически на рис. 5.5 (пример взят из книги ).

Можно заметить, что линий nyпр=1 на рис. 5. является уже известной нам границей установившегося горизонтального полета.

В стратосфере температура воздуха постоянна и тяга пропорциональна атмосферному давлению, т. е. Рp2/Рp1=р2/p1 (здесь коэффициент тяги Ср=const), поэтому в соответствии с формулой (5.4) при заданном числе М в стратосфере имеет место пропорция:

Следовательно, предельную по тяге перегрузку на любой высоте более 11 км можно определить по давлению р1 на линии статических потолков, где nyпр1=1. Ниже 11 км пропорция (5.6) не соблюдается, так как тяга при уменьшении высоты полета растет медленнее, чем давление (вследствие увеличения температуры воздуха), и величина коэффициента тяги Ср падает. Поэтому для высот 0-11 км расчет предельных по тяге перегрузок приходится производить обычным порядком, т. е. с использованием высотно-скоростных характеристик двигателя.

По величине nyпр можно найти такие частные характеристики маневренности самолета, как радиус rг, угловую скорость wг, время tf установившегося виража, а также г, w и t любого маневра, выполняемого при постоянной энергии (прл Pр=Q).

Продольной перегрузкой nх называется отношение разности между силой тяги (считая Рх=Р) и лобовым сопротивлением к весу самолета

Примечание При движении по земле к сопротивлению следует добавить еще и силу трения колес.

Если в последнюю формулу подставить располагаемую тягу двигателей Рр, то получим так называемую располагаемую продольную перегрузку :

Рис. 5.5. Предельные по тяге перегрузки самолета F-4C «Фантом»; форсаж, масса 17,6 m

Расчет располагаемой продольной перегрузки при произвольном значении nу производим следующим образом:

  • находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при заданной нормальной перегрузке ny вычисляем лобовое сопротивление следующим путем:
    ny->Y->Сy->Сx->Q;
  • по формуле (5.7) вычисляем nxр.

Если поляра - квадратичная парабола, то можно воспользоваться выражением Q=Q0+Qи¹*ny², в результате чего формула (5.7) примет вид

Вспомним, что при ny=nyпр ямеет место равенство

Подставив это выражение в предыдущее и разервув получим окончательную формулу

Если нас интересует величина располагаемой продольной перегрузки для горизонтального полета, т. е. для ny=1, то формула (5.8) приобретает вид

На рис. 5.6 в качестве примера приведена зависимость nxр¹ от М и Н для самолета F-4C «Фантом». Можно заметить, что кривые nxр¹(M, Н) в другом масштабе примерно повторяют ход кривых nyпр(М, Н), а линия nxр¹=0 точно совпадает с линией nyпр=1. Это и понятно, так как обе эти перегрузки связаны с тяговооруженностью самолета.

По величине nxр¹ можно определить такие частные характеристики маневренности самолета, как ускорение при горизонтальном разгоне jx, вертикальную скорость установившегося подъема Vy, скорость набора энергетической высоты Vyэ в неустановившемся прямолинейном подъеме (снижении) с изменением скорости.

Рис 5 6 Располагаемые продольные перегрузки в горизонтальном полете самолета F-4C «Фантом»; форсаж, масса 17,6 т

8. Все рассмотренные характерные перегрузки (пУ9, пупр, Я*Р> ^лгр1) часто изображаются в виде графика, приведенного на рис. 5.7. Он называется графиком обобщенных характеристик маневренности самолета. По рис. 5.7 для заданной высоты Hi при любом числе М можно найти пур (на линии Сур или п^макс). %Пр (на горизонтальной оси, т. е. при пхр = 0), Лхр1 (при пу=) и пХ9 (при любой перегрузке пу). Обобщенные характеристики наиболее удобны для различного рода расчетов, так как с них можно непосредственно снять любую величину, но они не наглядны ввиду многочисленности этих графиков и кривых на них (для каждой высоты нужно иметь отдельный график, подобный изображенному на рис. 5.7). Рис 5 7 Обобщенные характеристики маневренности самолета на высоте Hi (пример) Чтобы составить полное и наглядное представление о маневренности самолета, достаточно иметь три графиками р (М, Н) -как на рис. 5.4,6; пупр (М, Н) -как на рис. 5.5,6; пх р1 (М, Н) - как на рис. 5 6,6.

В заключение рассмотрим вопрос о влиянии эксплуатационных факторов на располагаемую и предельную по тяге нормальные перегрузки и на располагаемую продольную перегрузку

Влияние веса

Как это видно из формул (5.2) и (5.4), располагаемая нормальная перегрузка пур и предельная по тяге нормальная перегрузка nyпр изменяются обратно пропорционально весу самолета (при постоянных М и Н).

Если задана перегрузка ny, то при увеличении веса самолета продольная располагаемая перегрузка nxр уменьшается в соответствии с формулой (5.7), но простой обратной пропорциональности здесь не наблюдается, так как при увеличении G возрастает и лобовое сопротивление Q.

Влияние внешних подвесок

На перечисленные перегрузки внешние подвески могут влиять, во-первых, через свой вес и, во-вторых, через дополнительное увеличение безындуктивной части лобового сопротивления самолета.

На располагаемую нормальную перегрузку nyр сопротивление подвесок не влияет, так как эта перегрузка зависит только от величины располагаемой подъемной силы крыла.

Предельная по тяге перегрузка nyпр, как это видно из формулы (5.4), уменьшается, если увеличивается Схо. Чем больше тяга и больше разность Ср - Схо, тем меньше влияние сопротивления подвесок на предельную перегрузку.

Располагаемая продольная перегрузка лхр при возрастании Схо также уменьшается. Влияние Схо на nxр становится относительно больше при увеличении на маневре перегрузки nу.

Влияние атмосферных условий.

Для определенности рассуждений будем рассматривать увеличение температуры на 1 % при стандартном давлении р; плотность воздуха р при этом будет на 1 % меньше стандартной. Откуда:

  • при заданной воздушной скорости V располагаемая (по Сyр) нормальная перегрузка пур упадет примерно на 1%. Но при заданных индикаторной скорости Vи или числе М перегрузка nур при увеличении температуры не изменится;
  • предельная по тяге нормальная перегрузка nyпр при заданном числе М упадет, так как увеличение температуры на 1 % приводит к падению тяги Рр и коэффициента тяги Ср примерно на 2%;
  • располагаемая продольная перегрузка nхр при увеличении температуры воздуха также уменьшится в соответствии с падением тяги.

Включение форсажа (или его выключение)

Очень сильно влияет на предельную по тяге нормальную перегрузку nyпр, и располагаемую продольную перегрузку nхр. Даже на скоростях и высотах, где Рр >> Qг, увеличение тяги, например, в 2 раза приводит к увеличению nупр примерно в sqrt(2) раз и к увеличению nхр¹ (при nу = 1) примерно в 2 раза.

На скоростях и высотах, где разность Рр - Qг мала (например, вблизи статического потолка), изменение тяги приводит к еще более ощутимому изменению и nупр и nхр¹.

Что касается располагаемой (по Сyр) нормальной перегрузки nyр, то величина тяги на нее почти не влияет (считая Рy=0). Но следует учитывать, что при большей тяге самолет на маневре теряет энергию медленее и, следовательно, более длительное время может находиться на повышенных скоростях, на которых располагаемая перегрузка nyр имеет наибольшую величину.