Геометрическая проходимость автомобиля. Измерения проходимости: Теория Маневренность автомобиля определяется

1. Что такое геометрическая проходимость?

Геометрическая проходимость – это совокупность геометрических параметров автомобиля, влияющих на его способность преодолевать препятствия.

Если говорить о полной геометрической проходимости, то она складывается из нескольких групп параметров, которые можно условно обозначить как базовые и внедорожные.

Базовые параметры – это собственно габаритные размеры автомобиля: длина, ширина, высота и размер колесной базы. От них зависят как непосредственные показатели проходимости, так и геометрические внедорожные параметры.

2. Каковы базовые параметры, влияющие на геометрическую проходимость?

Как уже было сказано выше, геометрическую проходимость во многом определяют именно параметры автомобиля: общая длина и длина колесной базы, высота и ширина автомобиля, а также ширина колеи и длина переднего и заднего свесов. Длина, ширина и высота машины в объяснении не нуждаются, а об остальных можно сказать пару слов. Так, длина колесной базы – это расстояние между осями передних и задних колес, ширина колеи – это расстояние между центрами колес одной оси в пятне контакта с поверхностью, передний свес – это расстояние между осью передних колес и крайней передней точкой автомобиля, а задний свес – соответственно, расстояние между осью задних колес и крайней задней точкой автомобиля.

3. Каковы основные параметры геометрической проходимости?

Обычно, говоря о геометрической проходимости, рассматривают пять основных параметров:

  • клиренс, или дорожный просвет автомобиля;
  • угол въезда;
  • угол съезда;
  • угол рампы, или продольный угол проходимости;
  • угол опрокидывания.

Кратко поясним каждую из этих величин. Клиренс, или дорожный просвет – это расстояние от самого нижнего элемента автомобиля до поверхности земли. По ГОСТ это расстояние измеряется в центральной части автомобиля, но зачастую наиболее низкорасположенный элемент может быть смещен относительно центра: к примеру, им может являться резонатор глушителя или кронштейн амортизатора. Поэтому обычно клиренсом считают именно расстояние от этой нижней точки до горизонтальной поверхности, на которой стоит автомобиль.

Угол въезда – это угол между горизонтальной поверхностью и линией, проведенной между пятном контакта передних колес и нижней точкой передней части автомобиля. Иными словами, это максимальный угол рампы, на которую может въехать автомобиль, не коснувшись ее передней частью кузова. Несложно догадаться, что он зависит от клиренса и длины переднего свеса: чем больше клиренс и меньше передний свес, тем выше будет угол въезда.

Угол съезда – это то же самое, но для задней части кузова: угол между горизонтальной поверхностью и линией, проведенной между пятном контакта задних колес и нижней точкой задней части автомобиля. Иными словами, это максимальный угол рампы, на которую может въехать автомобиль при движении задним ходом, не коснувшись ее задней частью кузова. Он, очевидно, зависит от клиренса и длины заднего свеса: чем больше клиренс и меньше задний свес, тем больше будет угол съезда.

Угол рампы , или продольный угол проходимости – это максимальный угол, который может преодолеть автомобиль, не касаясь поверхности днищем. Он, в свою очередь, зависит от сочетания клиренса и длины колесной базы: чем больше клиренс и короче база, чем больше будет угол рампы. Его изменение, к примеру, можно наглядно увидеть в трехдверной и пятидверной версиях Lada 4X 4: углы въезда и съезда у них одинаковы, а вот угол рампы у трехдверки больше, потому что у нее короче колесная база.


Угол опрокидывания , или угол поперечной статической устойчивости – это максимальный угол поворота автомобиля вокруг продольной оси, при котором он может не опрокинуться набок. Он зависит от сочетания ширины и высоты автомобиля, ширины его колеи, а также его центра тяжести: чем больше ширина автомобиля и его колеи, меньше высота и ниже центр тяжести, тем выше угол опрокидывания.


Кроме этих основных параметров геометрической проходимости есть и еще некоторые, определенно относящиеся к геометрии, но не связанные напрямую с габаритами автомобиля. Это максимальный преодолеваемый уклон, глубина преодолеваемого брода, ходы подвески и артикуляция подвески.


Максимальный преодолеваемый уклон – это предельный угол относительно горизонта той поверхности, по которой способен двигаться автомобиль без посторонней помощи, то есть, предельная крутизна уклона, на который может въехать автомобиль.

Глубина преодолеваемого брода – это максимальная глубина водного препятствия, которое автомобиль может преодолеть без негативных последствий для его технической части. Глубина брода прежде всего ограничена высотой расположения точки забора воздуха двигателем: если вода поднимется до нее, то проникнет во впускной тракт и далее в цилиндры, что может спровоцировать гидроудар и серьезную поломку мотора. У обычных автомобилей точка воздухозабора расположена под капотом, что ограничивает максимальную высоту преодолеваемого брода. Специально подготовленные же внедорожники оснащаются шноркелем – патрубком, выводящим точку забора воздуха на уровень крыши, что позволяет преодолевать более глубокие броды без риска гидроудара.

Ход подвески – это максимальное расстояние, которое может проделать колесо в вертикальном направлении от точки максимального сжатия подвески до момента ее полной разгрузки на грани отрыва от поверхности. Чтобы оценить этот параметр, автомобиль можно загнать одним из передних колес на препятствие такой высоты, чтобы заднее колесо на той же стороне оторвалось от поверхности – это называется диагональное вывешивание, поскольку второе переднее колесо в этом случае тоже будет на грани отрыва от земли. Ну а расстояние по вертикальной оси между высотой подъема переднего и заднего колеса на одной стороне автомобиля в таком положении – это и есть артикуляция подвески . Ходы подвесок колес и артикуляция оказывают косвенное влияние на показатели геометрической проходимости.


4. Является ли геометрическая проходимость приоритетно важной характеристикой проходимости автомобиля в целом?

Выше мы обозначили и объяснили практически все параметры, характеризующие геометрическую проходимость автомобиля. На практике же, в «бытовом» понимании и беглом сравнении под геометрической проходимостью обычно понимают четыре из них: клиренс, а также углы въезда, съезда и рампы. Для описания возможностей своих кроссоверов и внедорожников автопроизводители используют именно эти цифры – и по большому счету, они вполне исчерпывающе характеризуют эксплуатационные показатели машины.

Однако ключевые слова здесь – «эксплуатационные показатели»: цифры геометрической проходимости – далеко не единственное, что определяет реальную проходимость. На нее в не меньшей степени влияют тип привода (а если привод полный – то , наличие межосевой и межколесных , а также характеристики используемых покрышек. И как показывает практика, именно последние становятся главным ограничением внедорожных способностей современных серийных автомобилей.

Геометрические показатели проходимости определяют способность автомобиля не задевать за препятствия, ограничивающие пространство для его движения. Они определяются конструкцией и компоновкой автомобиля.

Основными габаритными параметрами проходимости (рис. 11.1) являются: дорожный просвет (с), углы переднего и заднего свеса (γ 1 , γ 2), продольный и поперечный радиусы проходимости (R 1 , R 2), наружный и внутренний габаритные радиусы поворота (R н, R в), поворотная ширина (b к), углы гибкости подвижного состава (рис. 11.2) в вертикальной и горизонтальной плоскостях (β в, α г).


а б в

а – продольная проходимость; б – поперечная проходимость; в – радиусы поворота

Рисунок 11.1 – Геометрические параметры проходимости автомобиля

Дорожный просвет – это расстояние (с) между низшей точкой автомобиля и плоскостью дороги (см. рис. 11.1, а, б), которое характеризует возможность движения автомобиля без задевания различных препятствий (камней, пней и т.п.). Низшей точкой автомобиля обычно являются картер ведущего моста, картер маховика двигателя и т. п.

Углами переднего и заднего свеса (γ 1 , γ 2) называются углы, образованные плоскостью дороги и плоскостями, касательными к передним и задним колесам и к выступающим низшим точкам передней и задней частей автомобиля. Они характеризуют проходимость автомобиля по неровным дорогам во время въезда на препятствие или съезда с него (наезд на бугор, переезд через канаву, яму, кювет и т.д.). Чем больше углы свеса, тем более крутые дорожные неровности может преодолеть автомобиль.

а б

а – в вертикальной; б – в горизонтальной

Рисунок 11.2 – Углы гибкости автопоезда в плоскостях

Продольный и поперечный радиусы проходимости (R 1 , R 2) представляют собой радиусы окружностей, касательных к колесам и низшим точкам автомобиля в продольной и поперечной плоскостях. Эти радиусы определяют контуры препятствий, которые автомобиль может преодолеть. Чем меньше указанные радиусы, тем выше проходимость автомобиля.

Внутренний и наружный габаритные радиусы поворота (R н, R в) – это расстояния от центра поворота (О ) соответственно до ближайшей и наиболее удаленной точек автомобиля при максимальном повороте управляемых колес (рис. 11.1, в).


Поворотная ширина автомобиля (b к) характеризует разность между его наружным и внутренним радиусами поворота.

Радиусы поворота и поворотная ширина автомобиля характеризуют также и маневренность автомобиля – способность поворачиваться на минимальной площади.


Рис. 39. Классификация автомобилей по проходимости

Показатели опорных свойств. Основным показателем опорных свойств автомобиля является коэффициент сопротивления качению, величина среднего давления шин на грунт:

Р = G а /F ш n ш, (175)

где G а - полный вес автомобиля;

F ш - площадь контакта шины с дорогой;

n ш - число шин.

При оценке давления шин на грунт следует различать среднее давление по выступам протектора и среднее давление по контуру пятна контакта. Так как К н < 1, то среднее давление по выступам всегда больше среднего давления по контуру.

Указанные показатели опорных свойств имеют важное значение, т.к. предопределяют размер сил сопротивления качению.

Показатели сцепных свойств. Сцепные свойства автомобиля характеризуются величиной сцепной массы (M *), т.е. массы, приходящейся на ведущие колеса автомобиля; коэффициентом сцепной массы (m * = M * /M а) и коэффициентом сцепления шин с опорной поверхностью (j х). Перечисленные показатели определяют предельную величину силы тяги, которая может быть реализована ведущими колесами по сцеплению.

Показатели тяговых свойств. Тяговые свойства автомобиля характеризуются:

Удельной силой тяги:

р т = Р тмах /М а, (176)

где P тмax = M emax i тр h тр /r д - максимальная сила тяги, которую может развить автомобиль.

Удельной мощностью:

N уд = N емах /М а, (177)

где N еmax - максимальная эффективная мощность двигателя.

Все вышеперечисленные группы показателей дают лишь косвенную оценку проходимости автомобиля по слабым грунтам и не характеризуют возможность движения автомобиля в тех или иных конкретных дорожных условиях.

Из уравнения силового баланса следует, что движение автомобиля по той или иной грунтовой поверхности в принципе возможно, если соблюдаются следующие условия:

P j P т P y . (178)

Для оценки геометрической (профильной) проходимости автомобиля используется ряд геометрических показателей: 1) дорожный просвет автомобиля (h п); 2) передний (l пс) и задний свес автомобиля (l зс); 3) угол переднего свеса (b пс) и заднего свеса (b зс); 4) продольный (r пр) и поперечный радиус проходимости (r пп); 5) угол продольной гибкости автопоезда (l пр); 6) угол поперечной гибкости автопоезда (l пп); 7) угол перекоса мостов (g). Смысл перечисленных показателей поясняют рис. 40 - 44.

Рис. 40. Геометрические показатели проходимости автомобиля

Дорожный просвет представляет собой расстояние от опорной поверхности до наиболее низко расположенной точки автомобиля, и характеризует возможность движения автомобиля без задевания сосредоточенных препятствий (пни, кочки, камни и т.п.).



Передний (l пс) и задний свес (l зс), а также углы переднего b пс и заднего (b зс) свеса автомобиля характеризуют проходимость автомобиля по неровным дорогам при въезде на препятствие или при съезде с него, например в случаях наезда на бугор, переезда через канавы, овраги и т.п. Передний и задний свес – это расстояние от крайней передней (задней) точки автомобиля до плоскости, перпендикулярной продольной оси и проходящей через переднюю (заднюю) ось.

Для определения углов b пс и b зс проводят касательные к внешним окружностям шин передних и задних колес и к наиболее удаленным точкам передней и задней частей автомобиля. У многоосных автомобилей с балансирной подвеской осей тележки угол заднего свеса определяется при подъеме колес заднего моста до полного смятия буфера (рис.41), что соответствует началу отрыва колес среднего моста от опорной поверхности.

Рис. 41. Особенности определения продольного радиуса

проходимости и угла заднего свеса у многоосных автомобилей

Радиусы продольной r пр и поперечной r пп проходимости определяют очертание препятствия, которое, не задевая, может преодолеть автомобиль. Величину радиусов проходимости определяют по выполненному в масштабе эскизу автомобиля радиусами соответствующих окружностей, проведенных касательно к колесам и наиболее низкой точке автомобиля. Малые величины радиусов продольной и поперечной проходимости соответствуют лучшей проходимости автомобиля. Уменьшая, например, базу автомобиля, и увеличивая диаметр колес, можно уменьшить r пр. У трехосных автомобилей с балансирной подвеской двух задних мостов продольный радиус проходимости определяется при подъеме колес среднего моста до полного смятия буфера, что соответствует началу отрыва колес заднего моста от опорной поверхности.

Угол продольной гибкости является специфическим геометрическим показателем, относящимся только к автопоездам. Под углом продольной гибкости прицепного автопоезда понимается максимальный угол вертикального отклонения дышла прицепа от оси тягово-сцепного устройства автотягача (рис. 42).

Рис. 42. Угол продольной гибкости прицепного автопоезда

Для седельного тягача под l пр понимается предельный угол вертикального отклонения оси полуприцепа от продольной оси автотягача (рис. 43,а).

а б

Рис. 43. Углы продольной и поперечной гибкости седельного автопоезда

Угол поперечной гибкости автопоезда определяется как максимальный угол поперечного наклона полуприцепа относительно тягача, допускаемого конструкцией седельно-сцепного устройства (рис. 43,б).

Угол перекоса мостов g представляет собой угол, образованный осями переднего и заднего моста при их предельном перекосе (рис. 44).

Рис. 44. Угол перекоса мостов

Угол перекоса мостов характеризует способность автомобиля двигаться по неровностям без потери контакта колес с опорной поверхностью. Это значительно снижает неравномерность распределения вертикальной нагрузки между колесами, способствует сохранению управляемости автомобиля и предотвращает падение силы тяги, создаваемой ведущими колесами.

Кроме рассмотренных выше показателей, ОСТ 37.001.061-74 и некоторые другие документы для автомобилей повышенной проходимости предусматривают еще ряд оценочных показателей. К ним относятся: наибольшая ширина преодолеваемого окопа, наибольшая глубина преодолеваемого брода, глубина образуемой колеи, наименьший радиус поворота без потери проходимости, максимальное тяговое усилие лебедки, длина троса лебедки, наличие системы регулирования давления воздуха в шинах, а также наличие блокировки межколесных и межосевых дифференциалов или наличие дифференциалов повышенного трения.

Проходимость – способность ПА двигаться по заснеженным, мокрым и плохим (разбитым, размокшим) дорогам, бездорожью и преодолевать естественные (подъемы, спуски, косогоры) или искусственные препятствия без вспомогательных средств.

Маневренность – способность ПА поворачиваться (маневрировать) на минимальной площади.

Единого показателя, характеризующего проходимость и маневренность ПА, не существует. Проходимость и маневренность ПА зависит от его геометрических размеров и опорно-тяговых свойств, а также от конструкции трансмиссии (дифференциала, коробки передач) и механизма поворота управляемых колес.

По проходимости АТС делятся на дорожные (обычной проходимости), повышенной и высокой проходимости.

К дорожным относят АТС , предназначенные для преимущественного использования на дорогах с твердым покрытием. Обычно эти АТС являются неполноприводными (с колесной формулой 42);

62; 64 – первая цифра соответствует общему числу колес АТС, вторая – числу ведущих колес) с колесами дорожного рисунка шин и с простыми (неблокируемыми) дифференциалами.

Автомобильные транспортные средства повышенной проходимости предназначены для движения по дорогам с твердым покрытием, вне дорог и для преодоления естественных препятствий. Обычно эти АТС являются полноприводными (с колесной формулой – 44; 66 и т.д.), имеют тороидные или широкопрофильные (реже арочные) шины с системой регулирования давления воздуха. В трансмиссиях этих АТС часто применяют блокируемые дифференциалы.

Автомобильные транспортные средства высокой проходимости создаются для преимущественного использования вне дорог. Эти АТС имеют полный привод ведущих колес и специальные шины (шины сверхнизкого давления, пневмокатки).

Различают профильную и опорно-тяговую проходимость. Профильная проходимость характеризует способность АТС преодолевать неровности пути, препятствия и вписываться в дорожные габариты. Опорная проходимость – способность АТС двигаться по деформируемым грунтам.

Показатели профильной проходимости (рис. 6.13):

дорожный просвет h , м;

передний l 1 и задний l 2 свесы, м;

передний  1 и задний  2 углы свеса (или угол  1 въезда и угол  2 съезда), град.;

радиусы продольной R 1 и поперечной R 2 проходимости, м;

наибольший угол преодолеваемого подъема  max ;

наибольший угол преодолеваемого косогора ;

ширина преодолеваемого рва l р;

высота преодолеваемой вертикальной стенки (эскарпа).

Рис. 6.13. Показатели профильной проходимости

Дорожный просвет h (расстояние от нижней точки автомобиля до опорной поверхности) определяет возможность движения ПА по мягкому грунту и через единичные препятствия (камни, пни, кочки и т.д.). Чем больше h, тем лучше проходимость ПА. У ПА повышенной и высокой проходимости дорожный просвет h больше, чем у ПА на базе дорожных АТС. С увеличением грузоподъемности дорожный просвет h обычно увеличивается.

От свеса l 1 и l 2 зависит проходимость ПА при преодолении канав, кюветов. Чем меньше l 1 и l 2 , тем меньше вероятность «вывешивания» колес при преодолении препятствий.

Углы свеса  1 и  2 влияют на возможность преодоления ПА препятствий с короткими подъемами и спусками. Чем больше  1 и  2 , тем больше крутизна коротких неровностей, через которые может переехать ПА, не задевая за неровность при въезде и съезде.

Продольный радиус проходимости R 1 равен радиусу сегментного препятствия (с хордой, равной базе L АТС), через которое ПА может переехать поперек, не задевая нижней точкой, расположенной в средней части. Чем меньше R 1 , тем выше проходимость ПА, т.е. способность преодолевать местность с гребнистыми препятствиями (насыпи, бугры).

Поперечный радиус проходимости R 2 равен радиусу сегментного препятствия (с хордой, равной базе в АТС), через которое ПА может переехать вдоль, не задевая нижней точкой, расположенной между колесами. Чем меньше R 2 , тем лучше проходимость ПА при преодолении насыпей и борозд вдоль.

На профильную проходимость длинномерных ПА (автолестниц, автоподъемников) влияет соотношение между габаритными размерами: длиной L г , высотой H г и шириной В г. Соотношение между высотой Н г и длиной L г определяет проходимость под мостами или эстакадами (рис. 6.14).

Рис. 6.14. Влияние габаритов пожарного автомобиля на его продольную проходимость

При определении проходимости ПА под мостом необходимо убедиться в обеспечении H г < Н  на всей габаритной длине L г автомобиля, так как при вогнутой дороге и большой длине L г возможная для проезда высота уменьшается (рис. 6.14).

Показатели опорно-тяговой проходимости:

максимальная сила тяги Р к max ;

максимальный динамический фактор D max ;

коэффициент сцепления шин с дорогой ;

нагрузка на ведущие колеса (сцепной вес) G в;

давление колес на дорогу р.

Для увеличения проходимости ПА необходимо увеличивать D max и  (см. п. 6.1). Сцепной вес ПА можно увеличить, если увеличить число ведущих колес (использовать полноприводное базовое шасси) или сместить центр масс ПА в сторону ведущего моста.

Основным показателем опорно-тяговой проходимости ПА по дорогам с мягким покрытием является давление колес на дорогу:

(6.69)

где R n – нагрузка, воспринимаемая колесом, Н; S n – площадь контакта колеса с дорогой, м 2 .

Давление р современных ПА изменяют от 50 кПа (0,5 кг/см 2) при движении по мягким грунтам до 300 кПа (3 кг/см 2) при движении по дорогам с твердым покрытием. Лучшую проходимость имеют ПА с регулируемым давлением воздуха в шинах. Обычно для улучшения проходимости ПА необходимо уменьшить давление, но при движении по некоторым грунтам, наоборот, увеличивать.

Уменьшение давления воздуха в шине влияет также на коэффициент сцепления φ (см. табл. 6.1). Увеличения коэффициента  на мягких грунтах добиваются обычно уменьшением р, т.е. увеличением площади контакта шины с грунтом. Увеличения коэффициента  на дорогах с твердым основанием (например, асфальтобетонное шоссе, покрытое грязью, или неглубокие снежные заносы на дороге) добиваются увеличением р.

Показатели маневренности (рис. 6.15):

минимальный радиус поворота наружного переднего колеса R н;

ширина полосы движения А при повороте;

максимальный выход отдельных частей ПА за пределы траекторий движения наружного переднего и внутреннего заднего колес (расстояния a и b ).

Рис. 6.15. Показатели маневренности одиночного автомобиля

Наиболее маневренны ПА со всеми управляемыми колесами. При буксировке прицепа маневренность ПА ухудшается, так как при повороте увеличивается ширина полосы движения А.


В России особая любовь к пикапам, ведь это не просто утилитарный автомобиль с очень ограниченной областью применения, а самый доступный вариант рамного полноприводного автомобиля повышенной проходимости. Придется жертвовать комфортом и удобством перевозки пассажиров и личных вещей, но взамен вы получаете практически эталонную проходимость на бездорожье, без каких-либо доработок автомобиля.

Но у пикапов есть еще один, очень серьезный козырь на бездорожье - снаряженная масса автомобиля. В среднем, пикап такого типа весит 1700-1800 кг, в то время, как масса полноценного рамного внедорожника начинается от 2200 кг и выше. Такая, казалось бы незначительная разница в массе на самом деле очень серьезно влияет на проходимость автомобиля по поверхностям со слабой несущей способностью (снег, мокрая глина).

Итак, у нас c zizis на испытаниях рестайлинговый Ford Ranger с одиночной кабиной. Ему в компанию мы взяли Ford Ranger Double cab в экспедиционном варианте (масса которого явно больше 2 тонн) и два, достаточно легких (массой, чуть более 2 тонн, за счет алюминиевого кузова) классических внедорожника Land Rover Defender 110. Результаты испытаний показали, что пикап в штатной комплектации не только не уступает, а зачастую и превосходит по проходимости серьезно подготовленные внедорожники.

2. Конструктивно Ford Ranger, это та же Mazda BT-50, но с другим логотипом и немного иными элементами кузова. Платформа для автомобиля родом из 90-х годов, а это значит, что автомобиль практически неубиваемый. Спереди торсионная, а сзади рессорная подвеска. Полный привод подключаемый, с жестким разделением между осями. Есть понижающая передача. Шины зимние шипованные Dunlop.

3. В качестве места для покатушек была выбрана дорога к Многоэтажному военному бункеру , который благодаря мне стал широко известен в интернете. Всего 700 метров дороги, которая похожа на экстремальный полигон для испытаний внедорожников. Проехать без проблем здесь можно либо после сильных морозов, либо летом, когда все высыхает. С нами в компании gazzzaloddi на серебристом Дефендере, frantsouzov на темно-сером Дефендере и klimovs_travels на втором Рейджере.

4. Наш Рейнджер изначально выглядел совсем беспомощно на фоне таких серьезных и подготовленных автомобилей и поэтому мы решили пустить Дефендеры вперед, а сами воспользовались моментом и стравили давление в шинах до 1,5 атмосфер (оптимальный баланс между проходимостью и возможностью доехать до дома по трассе, без подкачки - напомню, у нас стандартная машина, в которой нет не то, что компрессора, а даже лопаты).

5. Тяжелые машины на накачанных колесах моментально продавливали снег и лед, оставляя за собой глубокие колеи. У нас не оставалось выбора и приходилось ехать за ними.

6. Техника прохождения препятствий gazzzaloddi заключалась в максимально быстром ускорении и попытке проезжать засадные места ходом. Так делать категорически нельзя - только движение внатяг, желательно на пониженной передаче. Кстати, известная ошибка многих, включая пониженный ряд не спешите включать первую передачу - начните, как минимум со второй. Крутящего момента хватит, особенно у дизеля.

7. А вот frantsouzov решил испытать свежеустановленную лебедку, не заморачиваясь на снижение давления в шинах. Итого, лебедка клевая, передвигался большую часть времени он исключительно с её помощью.

8. Мы тем временем скучали в самом конце колонны, пока другие развлекались с откапыванием автомобилей.

9. Впрочем, один раз мы тоже воспользовались лопатой, хотя машина не села.

10. И всё дело вот в этой детали - интеркулере, который висит слишком низко под бампером и совершенно ничем не прикрыт. Глубокие колеи и льдины очень легко могут его повредить. Пожалуй, это самое слабое место автомобиля.

11. Прошел всего один час, а у нас две машины сидят капитально, и две других никак не могут им помочь.

12. Серебристый Дефендер заехал так далеко, что лебедка до него не дотягивается. А дергать тросом нет возможности потому, что второй Дефендер тоже застрял.

13. Мы проехали всего 100 метров, а все уже решили разворачиваться и ехать обратно. Впрочем, оно и к лучшему, ведь обратно придется возвращаться по этой же дороге, а мы ее уже практически полностью уничтожили. Но все не так-то просто - нужно еще найти место для разворота.

14. Говорят, что «волка ноги кормят», так вот это относится и к внедорожным покатушкам. Лучше пройти 100 метров пешком и прощупать дорогу, чем 3 часа откапывать засевшую машину. Пока все занимаются эвакуацией, я нахожу место не только для разворота, но и прокладываю новую дорогу на выезд. Вторая пониженная и движение внатяг - мы без проблем проезжаем по глубоким колеям, присыпанным снегом и ни разу в них не проваливаемся.

15. По этому же маршруту пытаются выехать и остальные, но практически сразу застревают. Всегда, обязательно снижайте давление в шинах. Этим вы практически в 2 раза увеличиваете пятно контакта, тем самым снижая точечную нагрузку на грунт.

16. Серебристый Дефендер мы решили оставить здесь до весны:)

17. А сами поехали на следующий внедорожный участок - короткую дорогу от платформы 252 километр к Зинаевке. Это около километра малоиспользуемой дороги через лес с глубокой колеей (например, позапрошлым летом мы так и не проехали ее на Land Rover Discovery 4 , пожалели машину).

18. Сначала немного застряли. Ничего удивительного - решили ехать с ходу, не пройдя засадное место пешком. Результат был предсказуем. Впрочем, поддомкратились и выехали самостоятельно. К этому моменту нас догнали и остальные.

19. Впереди целина и малоприметная дорога, на первый взгляд ничего сложного, но снег скрывает под собой очень глубокие колеи с подтявшим льдом и водой. При этом маневрировать между ними крайне сложно и однажды свалившись в колею, выехать из нее будет очень трудно.

20. Денис frantsouzov и Митяй gazzzaloddi решили ехать в кузове пикапа, но потом узнали, что дорога не тупиковая и обратно возвращаться не потребуется. Тем временем уже начались сумерки и нужно было торопиться.

21. В этот раз мы ехали первыми и решили полностью избежать всех ошибок с маневрированием. Итого схема движения была простой - 30-50 метров пешком, прощупывая ногами поверхность под обе колеи. Затем то же самое за рулем. Дефендеры догнали нас на одной остановок в самом начале, но потом исчезли из виду. Ошибаться нам было нельзя - помощи ждать было неоткуда, тем более другие машины ехали сзади, а у нас обнаружился еще один сюрприз - у пикапа нет задней буксировочной проушины (!). А труба выполняющая роль бампера хоть и крепкая сама по себе, но имеет очень слабые крепления к кузову.

Итого, весь лесной участок маршрута мы прошли достаточно легко. Только на выезде из леса провалились в лужу, проломив своей массой 10-ти сантиметровый лед и пришлось разгребать осколки льдин. После этого успели съездить в Наро-фоминский Макдональдс и вернуться обратно с горячим питанием для экипажей Дефендеров, которые уже в полной темноте ползли в лесу.

Мы отлично покатались, еще раз доказав, что масса внедорожника очень сильно влияет на проходимость. Поэтому стоит несколько раз подумать перед тем, как на и без того тяжелый внедорожник вешать силовые бампера, лебедки и прочие детали увеличивающие массу автомобиля. Снижение давления в шинах самый простой и эффективный способ увеличения проходимости. Ну и несомненно очень многое зависит от водителя. Главное правило - никаких резких движений, очень плавная работа с педалями и рулем. А задача штурмана ходить, ходить и еще раз ходить.

22. Под капотом дизель объемом 2,5 литра и мощностью 143 лошадиные силы. Приятно радует широким рабочим диапазоном (тянет вплоть до 4500 оборотов) и скромным расходом топлива (10 литров на 100 км за день покатушек, включая бездорожье).

23. Салон полностью идентичен Мазде БТ-50. Просто, как и положено для утилитарной машины. Посадка за рулем приближена к легковой, это плюс. По комфорту есть претензии. В частности это рессорная подвеска сзади и пустой кузов. Лежачие полицейские проезжать на скорости выше 20 км/ч опасно для позвоночника - очень неприятные ощущения. Если в кузов положить груз, должно стать лучше.

24. Полный привод подключаемый, а это значит, что ездить по асфальту можно только на заднем приводе во избежание повреждения трансмиссии. На полном приводе можно ездить по снежным дорогам зимой, но со скоростью не более 80 км/ч. Система стабилизации отсутствует, а это значит вам гарантированы острые ощущения от управления заднеприводной машиной зимой, особенно учитывая тот факт, что задняя ось фактически не нагружена. Полный привод можно включить на ходу, но при условии, что вы заранее заблокировали хабы на передней оси. Блокируются они автоматически при включении режима 4H (на неподвижной машине) и после этого остаются замкнутыми. Разблокируются вручную с помощью кнопки RFW (Remote Free Wheel).

25. В интерьере очень много решений, когда-то примененных на Мазде3. В частности ручки дверей, воздуховоды и кнопки на консоли. Все удобство выдвижного столика над бардачком портит то, что он выдвигается всего на 10 сантиметров.

26. Ручник выполнен в виде трости, вытягиваемой на себя. Удобно и не занимает много места. Слева кнопка «прогрева» двигателя, которая повышает холостые обороты, рядом с ней обогрев сидений - кнопка общая на оба кресла. То есть пассажиру придется терпеть, если водитель захочет включить подогрев сидений.

27. Итого: кузов с одиночной кабиной это сугубо утилитарная машина. Даже рюкзак с вещами положить фактически некуда, а если с вами пассажир, то места для вещей не остается в принципе. Зато это отличный грузовой автомобиль с грузоподъемностью больше 1 тонны и погрузочной длиной более 2 метров (кстати, имейте ввиду, что владея пикапом все ваши друзья замучают вас с