Апгрейд кроссовера в винтажных колонках. Для чего нужны кроссоверы в компонентной акустике? Активный кроссовер для акустики электроника 04 характеристика

Магическая последовательность

«Фильтры» - понятие широкое. Даже электрические, даже частотно-разделительные, даже пассивные, даже предназначенные для использования в акустических системах. Всё равно пока - шире страны моей родной. Мы поставим задачу предельно конкретно, на 6 соток. Требуется разделить широкополосный сигнал с выхода усилителя таким образом, чтобы обеспечить оптимальную работу двух излучателей, специализирующихся на воспроизведении нижних и верхних частот звукового диапазона (то же самое, но короче - двухполоска).

Случай этот, в наш век трёхполосных фронтов и процессорных «голов», далеко не условный и не академический. Всё чаще (и далеко не по веянию моды) опытные мастера склоняются к 2,5-полосной топологии фронтальной акустики. Басовики (где-нибудь там, внизу) отфильтровали «головой», процессором или усилителем, а с СЧ/ВЧ начинается (и правильно, что начинается) священнодействие, которое очень нередко приводит к отказу от активной фильтрации в этой, чрезвычайно ранимой части звукового спектра. И здесь предмет нашего сегодняшнего обсуждения - один из очень перспективных методов борьбы за бескомпромиссный звук. Теперь - по порядку…

Наведение порядка

Про пассивные фильтры писано немало, переписано ещё больше, все всё в общих чертах знают. Бывают первого порядка, второго и так далее. Какой выбрать? Здесь давно сложились кланы «остроконечников» и «тупоконечников», и те и те и правы, и не правы одновременно, всё - по акустическим обстоятельствам. «Остроконечники» говорят: «Давайте разделим полосы между НЧ и ВЧ-излучателями как можно радикальнее, чтобы каждый занимался только присущим ему делом». Подход совершенно логичный: чем решительнее (а значит - с большей крутизной характеристики, а значит - фильтром более высокого порядка) ограничена полоса сигнала, подведенного, скажем, к мидбасу (будем всюду его называть мидбасом, потому что это короче всего, хотя из сказанного выше и того, что станет ясно чуть ниже, вытекает, что это, скорее всего, будет среднечастотник), тем меньше вылезет пакости, связанной с зонным режимом работы диффузора, в частности, окажется подавлен верхний, «кевларовый», резонанс жёстких диффузоров. Чем круче проходит АЧХ фильтра ВЧ, питающего сигналом пищалку, тем меньше на неё попадёт составляющих сигнала с частотой, близкой к её собственному резонансу, где ВЧ-головка производит максимум искажений. А главное - полоса, где головки излучают совместно, и где результат такой совместной работы менее всего предсказуем, тем уже, чем выше крутизна применённых фильтров. В общем, должна установиться полная гармония капиталистического образца: каждый занят своим делом, не лезет в чужие, с коллегой из другого частотного отдела встречается только во время обеденного перерыва, настолько короткого, что конфликту некогда развиться.

«А фаза? - кричат обычно на этом месте «тупоконечники. - Они же фазу крутят!» Чаще всего внятные протестные действия этими двумя выкриками и ограничиваются, ответ на встречный вопрос «ну и что?», как правило, даётся уже на языке жестов, из которых можно понять лишь уже сказанное: крутят, гады, нельзя же так. Да, действительно, чем выше порядок фильтра, тем быстрее происходит изменение фазового сдвига на выходе фильтра вблизи частоты раздела. «Ну и что? - стоят на своём «остроконечники. - Мы затем и свели к минимуму область совместной работы головок, где имеет значение разность фаз их излучения. А за пределами «обеденного перерыва» вступает в силу понятие абсолютной фазы, которую житель Земли на слух не воспринимает». Отсюда: в стане «остроконечников» есть очень сильные политические фигуры. Например, уже однажды приводившийся мной в пример элитной акустики Phoenix Gold («АЗ» №9/2002, вона когда было дело), все верхние модели CDT Audio, позже - EOS Opera, да и Зигфрид Линквиц, половина имени которого стала половиной имени знаменитых фильтров Линквица - Райли, менее как о четвёртом порядке и слышать не желает.

Тут, правда, «тупоконечники» достают из-за пазухи здоровенный булыжник, спорить с которым трудно и больно. Доказано умными людьми: только фильтры первого порядка корректно передают прямоугольный импульс. И ради этого (а это, кто сейчас поднял брови, надеюсь, таких немного - очень важно) приверженцы мягкой фильтрации готовы терпеть тяготы и лишения, связанные с неудовлетворительной фильтрацией внеполосного излучения. И широкой полосы совместной работы головок в двухполосной (как мы договорились) системе. Но ещё более умные из числа просто умных добавляют: хорошие импульсные характеристики двухполосной акустики с фильтрами первого порядка реализуются только при условии временной корректности излучения. То есть когда центры излучений НЧ и ВЧ-головок как минимум находятся близко друг к другу, как оптимум - размещены так, чтобы расстояние от центров излучения до измученных некогерентностью ушей было одинаковым.

Для справедливости отмечу: стану «тупоконечников» тоже есть кого предъявить, наиболее знаменитые приверженцы полного или частичного использования фильтров первого порядка в автомобильной акустике - Dynaudio, Morel и Eton. Сидите, сидите, не надо церемоний…

Теперь у нас есть практический ответ обоим непримиримым кланам одновременно: когда полосные излучатели находятся далеко друг от друга, никаких преимуществ фильтры первого порядка не имеют, одни недостатки. А когда близко - имеют. А это как раз случай «наших», автомобильных, трёхполосных систем. Когда басовик - там, внизу, а СЧ/ВЧ - у стойки, прижавшись друг к другу. В этом случае хорошие (подчёркнуто) пассивные фильтры первого порядка могли бы (мечтательно) вдохнуть новую жизнь и в незаслуженно (из-за нежелания возиться) забытую концепцию точечного излучателя, на манер, скажем, Morel Integra или (в меньшей, но далеко не нулевой степени) некоторых 4-дюймовых коаксиалов, у которых излучатели бывают очень неплохие (по отдельности), а вместе - ужас или максимум - полуужас, потому что фильтры - никакие, иногда - буквально. Теперь давайте выяснять, а можно ли сделать хороший фильтр первого порядка. Для этого…

Приведите детей

Рис. 1. Схема параллельного кроссовера.

Вряд ли они у вас совсем уж взрослые, так что подойдут. Известно из практики, что если работу какого-то устройства нельзя объяснить десятилетнему мальчику, оно, скорее всего, вообще не работает. Вот схема пассивного двухполосного фильтра первого порядка. Проще уже не бывает. Одна индуктивность, один конденсатор. Пришёл ваш сорванец? Теперь покажите ему рис. 1 и объясните правила игры: конденсатор С пропускает переменный ток тем лучше, чем выше частота. Индуктивность L тем лучше, чем частота ниже. Куда пойдёт ток с очень низкой частотой? Через индуктивность и на НЧ-головку. А на ВЧ - не пойдёт, она как бы заперта. Если частота будет повышаться, «кран», состоящий из индуктивности, будет постепенно закрываться, а второй, конденсатор - открываться, пока не окажется, что весь сигнал идёт на ВЧ-головку. Что нам и требовалось.

Рис. 2. Схема последовательного кроссовера

А теперь давайте эти же компоненты соединим по-другому (рис. 2). Вот пошёл от входа переменный ток низкой частоты. Как он может добраться до «земли» в низу схемы? Конденсатор на низкой частоте заперт, путь один - через НЧ-головку. Далее появляются два пути: через ВЧ-головку, у которой какое-никакое, а сопротивление, или же через индуктивность, у которой на низкой частоте сопротивления почти что никакого. На высоких частотах - всё наоборот, итог: через НЧ-головку идут низкие частоты, а высокие предпочитают более лёгкий обходной путь, через пищалку - высокие, потому что индуктивность не даёт им пройти мимо. Те же компоненты, но действуют они в другой манере. В первом кроссовере, параллельном, каждый из частотно-зависимых элементов вставал неодолимой преградой на пути «ненужных» частот, а два таких фильтра соединены параллельно и, вообще говоря, друг на друга никакого влияния не оказывают. Во втором, последовательном фильтре ёмкость и индуктивность шунтируют «лишние» частоты, а «нелишним» не оставляют иного пути, кроме как через предназначенную для них нагрузку. Интересно, давно это кому-то пришло в голову? И есть ли, собственно, разница?

Между Тилем и «Видеотоном»

Ответ на первый вопрос: давно. Кому первому, мне установить не удалось, но были два смутных воспоминания. Первое: схему последовательного кроссовера я видел в древнем (уже тогда) радиолюбительском справочнике, дававшем мне материал для размышлений в период обучения в средней школе (это глубоко в прошлом веке). Второе: такую же я видел в инструкции по эксплуатации колонок Videoton (130 руб. за пару, это тогда было грабежом) и уже, кажется, в роли студента, подивился остроумию схемы. Славу же таким фильтрам принёс небезызвестный джентльмен по имени Рихард Смолл. На рубеже 60-х и 70-х годов (то есть существенно после справочника, примерно одновременно с «Видеотоном» и заведомо, между прочим, до серии публикаций, после которых появилось понятие «параметры Тиля - Смолла») он сделал доклад на сессии Audio Engineering Society о любопытных деталях поведения таких фильтров, чем оживил интерес к ним.

Рис. 3. АЧХ кроссоверов первого порядка

Вопрос второй получит такой ответ: есть, хотя заметна становится не сразу. Приведу два графика АЧХ (рис. 3), оба получены для фильтров, показанных на рис. 1 и 2, для наглядности здесь и далее будем считать, что частота раздела кроссовера 1 кГц. Я знаю, что таких не делают, повторю - для наглядности. Говорите, там один график? Нет, два, полностью наложившихся друг на друга. Разницы в АЧХ не будет никакой, если номиналы элементов фильтра выбраны одинаковыми, по формулам для параллельных фильтров первого порядка с характеристикой Баттерворта (а у таких фильтров она, хоть ты тресни, другой не будет). Формулы суду известны, но чтобы вам не бегать, а мне потом не ссылаться:

L = R н /(2П ∙ F o) С = 1/(2П ∙ F o ∙ R н)

Рис. 4. Импеданс эквивалентов реальной нагрузки

При сопротивлении нагрузки Rн, скажем, 8 Ом и частоте раздела, как договаривались, 1 кГц получаем номиналы 1,27 мГн и 20 мкФ. Обратите внимание: в этом, абсолютно идеальном случае суммарная АЧХ кроссовера (чёрная линия) строго горизонтальна для обоих фильтров. Идеал же, как известно, недостижим. Как будут себя вести такие кроссоверы на реальной нагрузке с импедансом, зависящим от частоты? Для целей этого эссе я составил эквиваленты НЧ и ВЧ-головок с довольно типичными, ожидаемыми в реальной жизни параметрами. На рис. 4 - кривые их импеданса. В чём типичность: гипотетический мидбас - головка с резонансной частотой около 70 Гц (что, в общем-то, сейчас неважно) и довольно высокой индуктивностью звуковой катушки. А вот это - важно и типично для диффузорных НЧ/СЧ-головок. Пищалку я условно взял с резонансной частотой 650 Гц, что удобно для наших опытов, это всего на 2/3 октавы ниже запланированной частоты раздела. Резонансный пик - как у пищалки без демпфирования феррожидкостью, это отягчающее обстоятельство для кроссовера, индуктивность - умеренная, на практике часто бывает ещё ниже.

Рис. 5. Параллельный кроссовер на реальной нагрузке

Рис. 6. Последовательный кроссовер на реальной нагрузке

Как сработают наши фильтры-близнецы на такой нагрузке? Вот тут они и перестанут быть близнецами. На рис. 5 - АЧХ звеньев параллельного кроссовера и результат их суммирования, пунктиром показано, как должно было быть в идеале. В реале на АЧХ фильтра ВЧ вылез горб на частоте резонанса пищалки, он немедленно отразился на суммарной АЧХ, но это бы ещё ничего. Посмотрите, насколько упала эффективность ФНЧ оттого, что с ростом частоты импеданс его нагрузки (звуковой катушки мидбаса) растёт. Крутизна спада АЧХ, и так невеликая, ещё уменьшилась, а уже через октаву после частоты раздела фильтрация как таковая прекратилась. Суммарная АЧХ, как нетрудно заметить, слёзы да и только. Да, тут многие скажут: на то и придуманы цепи Цобеля, чтобы компенсировать индуктивность головки, при фильтрах низких порядков без Цобеля - кранты. Но ведь у нас пока одна индуктивность и одна ёмкость, попробуем что-нибудь сделать, оставаясь в рамках этого арсенала. Вот тот же набор АЧХ, но для последовательного фильтра (рис. 6). Посмотрите, совсем другой коленкор, почему, спрашивается? А потому: то, что было препятствием в работе параллельного фильтра, стало фактором повышения эффективности у последовательного. Мешала индуктивность НЧ-головки, а здесь, если вернуться к нашей аналогии с кранами, пропускающими (или задерживающими) различные частотные составляющие, когда с ростом частоты растёт сопротивление мидбаса, сигнал с ещё больше охотой идёт в обход, через ёмкость. Почему это не происходит в цепи пищалки, где эффект был бы обратным? Да потому, что в реальной жизни пищалок с большой индуктивностью нет.

А теперь - самое главное: как при замене резисторов эквивалентом реальных головок изменилась суммарная АЧХ? А никак. В этом - основное свойство последовательных фильтров, отсюда и название того, исторического, доклада Смолла: «Constant-Voltage Crossover Network Design». При любых обстоятельствах сумма напряжения на мидбасе и пищалке будет равна входному, то есть напряжению на выходе усилителя.

Рис. 7. Параллельный кроссовер, переменная активная нагрузка

Давайте сделаем такой опыт: пусть по какой-то причине сопротивление нагрузки одного из звеньев кроссовера оказалось отличным от расчётного. Ну мало ли, другой динамик подоткнули или у этого из-за нагрева возросло сопротивление звуковой катушки. Для ясности снова вернёмся к идеальной, омической нагрузке, потом, если захотите, покажу то же самое на реальной. На рис. 7 - результаты опыта с параллельным фильтром. Звено ФВЧ о происходящем в соседнем, ФНЧ, вообще ничего не знает, потому у него АЧХ остаётся неизменной. А у ФНЧ меняется (кривые соответствуют изменению нагрузки от 6 до 12 Ом), при этом двигается частота раздела, а суммарная АЧХ уже далеко не столь совершенна, как в случае расчётной нагрузки.

Рис. 8. Последовательный кроссовер, переменная активная нагрузка

Рис. 9. Параллельный кроссовер, переменная реальная нагрузка

Рис. 10. Последовательный кроссовер, переменная реальная нагрузка

Делаем то же самое с последовательным фильтром (рис. 8). Здесь изменение сопротивления одной из двух нагрузок влияет на АЧХ в обоих звеньях фильтра, однако суммарная АЧХ стоит как вкопанная в силу уже упомянутого обстоятельства. Constant-Voltage, как и было сказано. Раз настаиваете, вот тот же опыт на эквивалентах реальных головок. Рис. 9 - для параллельного кроссовера, фильтрация мидбаса не улучшилась, а при изменении омического сопротивления его звуковой катушки суммарная АЧХ меняется очень заметно. Рис. 10 - случай последовательного кроссовера, остальные условия - те же. В известных (и не катастрофических) пределах меняются обе составляющие АЧХ, сумма, как и прежде - кремень. Как видите, уже два практических результата мы имеем. А если ещё копнуть?

Греческая письменность

Есть такая греческая буква, называется «зета», пишется вот так: . Мощная буква, с её помощью можно сделать немыслимое: пользуясь всё тем же арсеналом частотно-зависимых элементов (одна индуктивность и одна ёмкость) строить кроссоверы с очень разными характеристиками. Для этого чудную букву мы вставим в уже приводившиеся формулы. Вот так:

L = ζ ∙ R н /(2П ∙ F o) С = 1/ζ (2П ∙ F o ∙ R н)

Рис 11. Параллельный кроссовер при различных значениях

Всё, что было раньше, предполагало, что= 1. Именно в этом случае на резистивной нагрузке параллельный и последовательный кроссоверы оказываются близнецами. А если греческий символ будет равен чему-нибудь другому? На это параллельный и последовательный кроссоверы будут реагировать совершенно по-разному. Если, скажем, менятьв диапазоне от 0,5 до 2 и выбирать номиналы элементов согласно этим значениям, с параллельным кроссовером произойдёт то единственное, что может произойти. При> 1 индуктивность будет больше расчётной, частота среза ФНЧ снизится, частота среза ФВЧ при уменьшенной (по формуле) ёмкости, наоборот, повысится. Формы АЧХ фильтров (рис. 11) останутся неизменными, а на суммарной АЧХ появится вполне ожидаемая «яма». При< 1 всё наоборот, кривые ФНЧ и ФВЧ сблизятся, на сумме - горб на частоте раздела.

Рис 12. Последовательный кроссовер при различных значениях

Проделаем то же самое с последовательным кроссовером (рис. 12). Как вам такое? Частота раздела - не шелохнулась, она в последовательном кроссовере исчерпывающим образом определяется величиной произведения L и С по известной формуле колебательного контура:

F o = 1/2П(L ∙ C) 1/2

Рис. 13. Сравнение с кроссовером 2-го порядка типа Баттерворта

Рис. 14. Сравнение с кроссовером 2-го порядка типа Линквица - Райли

Рис. 15. Сравнение с кроссовером 2-го порядка на реальной нагрузке

А оно при изменении останется неизменным. Зато будет меняться добротность контура, в результате форма АЧХ сигнала на ВЧ и НЧ-нагрузках будет существенно меняться. При> 1 (большая индуктивность, маленькая ёмкость) контур выйдет сильно демпфированным, АЧХ звеньев - иметь крутизну даже меньше 6 дБ/окт., область совместной работы головок станет широкой. Однако, как вы уже могли догадаться, суммарная АЧХ - снова горизонтальная прямая. При< 1 добротность контура возрастёт, при этом будет неуклонно возрастать крутизна спада АЧХ составляющих кроссовера. При= 0,7 она достигнет 9 дБ/окт., а при= 0,5 - всех 12 дБ/окт., фильтр первого порядка при этом становится сравним с фильтром второго. В качестве доказательства: на рис. 13 - АЧХ кроссовера второго порядка с фильтрами Баттерворта и АЧХ последовательного кроссовера на ту же частоту при= 0,5. Обратите внимание на горб высотой 3 дБ на суммарной АЧХ кроссовера второго порядка, таково его свойство: либо глубокий провал на частоте раздела (при синфазном подключении головок), либо невысокий горб - при противофазном. Такого горба нет у фильтра типа Линквица - Райли (рис. 14), здесь сопоставимой крутизны спада до уровня -15 - 20 дБ удалось достичь даже при менее решительном значении. И вновь, для проверки, заменим резисторы эквивалентом реальных головок (рис. 15). Столкновение с реальной жизнью тщательно (но теоретически) рассчитанному Баттерворту, как можно видеть, на пользу не пошло, а основанный на столь же теоретических расчётах и даже прощающий ошибки в определении, например, импеданса головок, последовательный фильтр сработал от «не хуже» до «лучше», в зависимости от того, на что смотреть.

Рис. 16. Зависимость входного сопротивления отна активной нагрузке

Рис. 17. Зависимость входного сопротивления отна реальной нагрузке

За счёт чего даётся последовательному фильтру такая гибкость, где-то и чем-то придётся же расплачиваться? В принципе - да, но кое-что из расплаты - недорого, а другое может оказаться не расплатой, а премией, если применить к месту. Расплата первая: чем ниже, то есть чем выше крутизна спада АЧХ фильтров, тем ниже падает импеданс на входе кроссовера вблизи частоты раздела, физические объяснение этому такое: при малых значенияхпоследовательный колебательный контур, образуемый двумя компонентами кроссовера, оказывается слабо демпфированным нагрузкой и начинает проявлять свойственный ему последовательный резонанс. Масштабы проблемы - на рис. 16, это - для идеальной, резистивной нагрузки. Если при= 1 импеданс на входе кроссовера не зависит от частоты и равен сопротивлению нагрузки НЧ и ВЧ-звена, то при предельно (на практике) низком значении= 0,5 импеданс на частоте раздела снизится вдвое. При> 1 - повысится, но этот случай нам меньше интересен. Случай реальной нагрузки - на рис. 17.

Рис. 18. Разность фаз между выходами кроссовера при различных

Рис. 19. Схема модифицированного кроссовера

Рис. 20. АЧХ кроссовера со «странным» резистором

Рис. 21. Зависимость фазового сдвига от значения RS

Второе: знаменитое «А фаза?!.» В идеальном случае (резистивная нагрузка,= 1), сдвиг фазы между выходами НЧ и ВЧ всюду равен 90 градусов, как и у параллельного фильтра, оттого им и фиолетово, в какой полярности подключены головки. При иных значенияхвеличина разности фаз сигналов НЧ и ВЧ будет меняться от частоты, на рис. 18 показано как, при крайних значениях греческой буквы. В умелых руках это не баг, а фича, здесь полярность включения начинает играть роль, а значит, появляется и дополнительный инструмент настройки (вспомним, если кто забыл, это про устройство, состоящее из двух деталей!). Кстати, кому этого мало, может добавить третью. Схема модифицированного кроссовера приведена на рис. 19. Здесь «поперечина», идущая к точке соединения конденсатора и катушки, заменена резистором RS. Почему «S» - узнаете. Выяснилось (не без некоторого удивления), что даже при небольших номиналах этого резистора, составляющих 5 - 15 % от сопротивления головок (в нашем случае 0,5 - 1,5 Ом), АЧХ звеньев фильтра заметно меняется, напоминая АЧХ так называемых «странных фильтров», нашедших применение в кроссоверах второго порядка (рис. 20). Суммарная АЧХ последовательного кроссовера от значения «странного резистора» RS, как обычно, не зависит, а вот фазовый сдвиг - зависит (рис. 21), значит - есть ещё одна степень свободы. Впрочем, кого ломает добавлять лишний элемент в элегантную простоту последовательного кроссовера, может попробовать что-нибудь отнять…

Убавить от неубавляемого

Рис. 22. Схема «бесконденсаторного» кроссовера Diaural

Рис. 23. АЧХ «бесконденсаторного» кроссовера

Рис. 24. Схема «антипатентного» кроссовера Acoustic Reality

Рис . 25. АЧХ кроссовера Acoustic Reality

Что, казалось бы? Два элемента, совесть надо иметь. Так вот это как раз про совесть. Как было уже написано, неизбежно присутствующая у мидбаса индуктивность в случае последовательного фильтра только помогает работе шунтирующего конденсатора. Вот тут кое-кому пришло в голову: а не обойтись ли только этой помощью, а конденсатор - выкинуть? Попробовали, причём не только в форме рацпредложения, но и на практике. Некто Эрик Александер, владелец компании Diaural (домашняя акустика по невменяемым ценам, США), подал заявку на патент под названием «Бесконденсаторный кроссовер». Там он признал, что да, последовательный кроссовер это здорово, даже упомянул, что их используют самые рафинированные изготовители домашней акустики (Sonus Faber, в частности, или Martin Logan), но вот конденсатор… Не любят их за что-то хай-эндщики. Вот дядя Эрик и решил конденсатор выкинуть, заменив его резистором, пусть мидбас себя фильтрует собственной индуктивностью. Пищалка же от попадания на неё низких частот по-прежнему защищена катушкой кроссовера, к индуктивностям у хай-эндщиков претензий куда меньше, тем более не последовательно включена, а параллельно, через неё идёт, стало быть, не полезный сигнал, а «слив». Вот иллюстрация к патенту, выданному в 2000 году (рис. 22), а на рис. 23 - результат нашего моделирования патентованного кроссовера. Как-то показалось, что не очень, ни на активной нагрузке (пунктир), ни на реальной, в отличие от обычного последовательного устройства. Но тут ещё - про совесть… Патент - могучий тормоз на пути распространения интересных технических решений, только cyнься - тебя на деньги. Науке неизвестно, совался ли кто-нибудь, или патент США за номером 6,115,475 остался украшением офиса компании, но, чтобы этот тормоз устранить насколько возможно, один датчанин опубликовал в Интернете свою схему аналогичного назначения. И объявил, зачем опубликовал: чтобы воспрепятствовать применению патентных ограничений, если некое знание является всеобщим достоянием, доказать нарушение патентных прав затруднительно, колесо никем не запатентовано именно по этой причине. Альтернатива - некоторая помесь обычного последовательного кроссовера и «бесконденсаторного» плюс дополнительный фильтр НЧ в цепи мидбаса, приводится на рис. 24. Ожидаемая АЧХ (рис. 25, пунктир - резистивная нагрузка, сплошные линии - реальная) тоже особого восторга не вызывает, тем более что исчезла магия «чистого» последовательного кроссовера - гарантированное суммирование ВЧ и НЧ-составляющих. Так что лучше пока оставаться на Клондайке, и здесь дел хватит…

Кроссоверы, или разделительные частотные фильтры, впервые появляются в поле зрения тех, кто сталкивается с миром car audio, как часть комплекта компонентной акустики. Несложную функцию этих небольших коробочек без особых усилий сможет объяснить даже ученик продавца в магазине – разделяют сигнал в многополосных динамиках так, чтобы басовик получал низкие частоты, среднечастотник – средние, а «пищалка» – верхние. Но так ли все просто на практике, если кроссоверы занимают в каталогах производителей автомобильной аудиоаппаратуры не меньше страниц, чем усилители, а построить в автомобиле музыкальную систему уровня hi-fi без таких «коробочек» можно даже и не пытаться.

Виноваты динамики
Действительно, с кроссоверами далеко не все так просто, как могло показаться будущему менеджеру по продажам. Если основные компоненты акустической системы – динамики – любой специалист (или даже не совсем специалист) сможет подобрать, исходя из собственных предпочтений (из-за чего порой скрещиваются абсолютно разные по идеологии марки), то выбор разделительных фильтров часто оказывается камнем преткновения даже для опытных инсталляторов.

Каждый, кто хоть немного «в теме», четко знает, что самый значительный источник искажений звука – это динамики. Идеальным выходом из этого положения был бы динамик, способный один воспроизводить весь звуковой диапазон. К сожалению, сделать полноценный широкополосный излучатель никому пока не удалось. В результате самых удачных попыток появились динамики, которые способны работать в большей части диапазона, но не более чем удовлетворительно.

А нужно, чтобы динамик работал безукоризненно, и не в части диапазона, а во всем, иначе все усилия будут лишены практического смысла. В борьбе за идеальное качество звука общий диапазон частот приходится делить на части и ставить во главе каждой из них оптимизированный для каждой полосы частот динамик – сабвуфер, мидбас, среднечастотник или твиттер. Делением, собственно, и заведуют кроссоверы. А справедливость (читай «качество») их «дележки» зависит от интеллекта самих кроссоверов, среди которых иногда встречаются шибко умные экземпляры, а иногда так себе.

Вам пассивный или поактивнее?
Способов деления сигнала в автозвуке (как, впрочем, и в домашнем аудио) существует всего два. Можно делать это на выходе усилителя, что поручено широко распространенным пассивным кроссоверам. С точки зрения схемотехники это значительно более примитивные устройства, чем активные разделительные фильтры. В пассивных кроссоверах выделение нужной полосы доверено различным индуктивностям, емкостям и резисторам, то есть такой начинке, которая не нуждается в дополнительном питании. Другими словами, пассивные кроссоверы используют электрическую энергию линии, в которую включены.

Их основными преимуществами считают небольшую стоимость и гибкость при построении аудиосистемы в автомобиле. Используя пассивные кроссоверы, можно создать отличную акустическую систему на базе одного-единственного усилителя. Именно поэтому их нередко используют мастера высшего пилотажа car audio (и профессиональные инсталляторы, и спортсмены) – при наличии определенных навыков у сборщиков система из нескольких пассивных фильтров может выдавать на динамики почти идеальный сигнал, который, казалось бы, невозможно получить без применения дорогих электронных агрегатов.

Недостатки, естественно, тоже есть. Во-первых, в пассивном кроссовере практически невозможно изменять какие-либо настройки кроме ослабления сигнала на «пищалке». Во-вторых, это «транспортные потери», или ослабление звукового сигнала (имеющее аппетитное английское название damping), возникающие при прохождении сигнала через катушку индуктивности и из-за сопротивления кабеля. Это означает, что честно отданный усилителем сигнал попадает на динамики не только отфильтрованным, но и урезанным, причем в отдельных случаях урезанным весьма ощутимо.

Также не без основания считается, что близко расположенные к силовым линиям пассивные кроссоверы могут подхватывать индуктивные помехи, поэтому производители рекомендуют прятать пассивную разделительную аппаратуру от происков шального тока. При выборе пассивных кроссоверов первое, на что стоит обратить внимание, так это на их способность выдерживать пиковые нагрузки, создаваемые усилителем, так как перегрузки они переносят довольно плохо.

Чересчур интенсивный сигнал, поступающий от усилителя, может существенно изменять частоту среза пассивных фильтров, то есть на динамики в этом случае приходит необходимая им частота плюс немного соседней, что в случае с мидбасами может и не повлиять на качество звука (если вы не на соревнованиях), а вот пищалки подвергаются существенному риску «сгореть на работе».

В основном пассивные кроссоверы применяются для обработки сигнала твитеров и среднечастотных динамиков. Для низкочастотных динамиков и сабвуферов эти кроссоверы использовать можно, однако в этом случае резко возрастает требование в качеству конденсаторов и катушек индуктивности, что приводит к их удорожанию и увеличению в размерах.

Второй способ разделить сигнал – сделать это не после усилителя, а перед ним. Для этой, несомненно более ответственной, задачи используются активные кроссоверы. Такие устройства представляют собой множество активных фильтров, которыми можно управлять и легко изменять частоту среза любого канала. В большинстве случаев они расположены сразу за проигрывателем, настолько близко, насколько позволяет концепция конкретной инсталляции.

По сравнению с пассивными кроссоверами, преимуществ у активных больше, а явный недостаток всего один – стоят они значительно дороже. Первое и основное преимущество активных кроссоверов заключается в возможности настроить их параметры в соответствии с особенностями конкретных динамиков. Кроме настройки частот фильтров, современные активные кроссоверы обладают целой коллекцией дополнительных регулировок, способных должным образом подготовить сигнал перед тем, как он попадет в усилитель.

Главное, что следует сказать об активных кроссоверах: они не настолько универсальны, чтобы можно было обойтись без пассивных фильтров, но при выборе между регулируемыми кроссоверами и устройствами с фиксированными настройками в восьми случаях из десяти правильнее предпочесть первые. Это одно из немногих неписаных правил мира car audio.

Теперь о второстепенных недостатках. Их немного. В том случае, если активный кроссовер имеет раздельные выходы для каждой полосы частот, возникает необходимость использовать отдельные усилители для каждой полосы. Учитывая, что средняя стоимость активного кроссовера равна тремстам валютным единицам, а неплохой двухканальный усилитель потянет еще на двести, удовольствие оснастить свою аудиосистему активным делителем частот может существенно увеличить статью расхода.

Во-вторых, поскольку активный кроссовер по определению использует активные компоненты, он вносит в систему дополнительный шум, тогда как при использовании пассивного кроссовера этого не происходит. Наличие активного кроссовера в автомобильной аудиосистеме говорит о серьезном подходе к качеству звука. И если раньше считалось, что кроссоверы – привилегия дорогих инсталляций, то сегодня их можно встретить даже в аудиосистемах среднего уровня.

Наука и техника
Пассивные и активные фильтры разделяют на три вида. Первый – высокочастотные («high pass») кроссоверы, которые пропускают сигналы с частотой выше определенной без изменения, сигналы более низких частот проходят через него с ослаблением. Низкочастотные («low pass») кроссоверы, наоборот, пропускают низкие частоты и подавляют высокие. Третий тип кроссоверов – полосовой («band pass»). Это фильтры, пропускающие сигналы в определенном диапазоне частот и ослабляющие сигнал за его пределами. Как правило, бэндпасы используются для среднечастотных динамиков.

Кроме частоты среза, принципиальная характеристика кроссовера – его порядок. Нет, не в смысле того, насколько аккуратно уложены в корпус компоненты фильтра – в этом отношении кроссоверы – зверюшки исключительно чистоплотные. Порядком называют соотношение качества фильтрации и ослабления кроссовером полученного сигнала. Кроссоверы первого и второго порядков обладают фильтрами попроще и, соответственно, склонностью к несанкционированным манипуляциям с сигналом в момент их перегрузки.

Места их обитания – головные устройства стоимостью до 200 долларов или недорогие комплекты «разнесенных» динамиков без претензии на принадлежность к серьезному брэнду. Исключений сколько угодно, но общая статистика именно такова. Кроссоверы третьего порядка можно встретить во многих усилителях мощности, где они соседствуют с эквалайзерами и, если повезет, с цифровыми процессорами, разговор о которых еще впереди. Четвертый порядок кроссоверов говорит об их элитности. В большинстве случаев такие кроссоверы вынесены в отдельный корпус.

О том, насколько эффективно делитель четвертого порядка «отрезает» лишние частоты, среди установщиков аппаратуры не так давно ходили настоящие легенды. Эти фильтры никогда не «облажаются», поделившись средней частотой с твитером, и не удивят владельца неожиданным сигналом, подаваемым ими на усилитель. У кроссоверов четвертого порядка все строго и четко, как в лучших банках Швейцарии.

Самое важное в настройке кроссовера – это правильный выбор частоты среза. Если мы имеем трехполосный активный кроссовер, то, значит, перед нами стоит задача в определении двух точек деления. Первая точка определяет частоту среза для сабвуфера и начало среднечастотного диапазона для мидвуфера.

Вторая точка определяет частоту окончания среднего диапазона и отправную частоту высокочастотного диапазона для твитера. Если ошибиться с этими точками, качества звука не будет никакого, а твитеры, наглотавшись низких частот, сыграют в мусорный ящик. Именно поэтому подбор частотных фильтров куда более ответственный процесс, чем покупка и установка динамиков.

Вид вымирающий и вид появляющийся
В среде аудиофилов в последнее время все устойчивее ходит адаптированный вариант крылатого выражения. «Другие времена, другие децибелы» – говорят вчерашние ревностные сторонники аналоговой аппаратуры, отправляясь покупать проигрыватели MP3 и цифровые процессоры. Кроссоверы, по сути выполняющие лишь часть функций цифровых процессоров, по-прежнему пользуются устойчивым спросом, однако перспективы развития индустрии аналоговых фильтров довольно туманны.

Недавнее общее мнение, что, мол, процессор звукового сигнала просто забавная игрушка, хотя и может иметь некоторое применение, а cюрраунд-процессоры и устройства восстановления баса не более чем «бубнелки» и «свистелки», абсолютно не нужные в должным образом подобранной системе, сегодня полностью забыто. Звуковые процессоры победным маршем шествуют по стране car audio. Действительно, список опций не самого дорогого цифрового устройства бросает в трепет аудиофилов.

Помимо цифровых регуляторов уровня сигнала, процессоры обладают рядом эквалайзеров (не параметрических, а цифровых, разумеется), блоками задержки сигнала и блоками маршрутизации, которые наделяют каждый из каналов необходимыми для качественного воспроизведения конкретной мелодии свойствами. Активная цифровая фильтрация присутствует здесь, уже как нечто само собой разумеющееся.

Самый существенный недостаток цифровых фильтров заключается в том, что частенько их процессоры оказываются заваленными работой «по совместительству»: выделением определенной частоты, задержкой или даже усилением сигнала. В таких условиях качество фильтрации заметно снижается, поэтому большинство профессиональных систем включает в себя и сигнальный процессор, и аналоговый кроссовер.

Первый отвечает за разные эффекты и филигранные настройки звуковой картины, а второй по старинке делает то, что делал всегда, то есть качественно делит поступивший с процессора сигнал и передает его динамикам.

Некоторые профессиональные инсталляторы считают, что лишь высокая стоимость цифровой аудиоаппаратуры замедляет процесс вымирания аналоговых фильтров. Другие полагают, что как бы далеко ни зашел прогресс, в автомобильной аудиосистеме всегда найдется место для такого устройства, как хороший аналоговый кроссовер третьего или четвертого порядка. Оба мнения можно считать верными, не забывая при этом, что существует множество дорог, ведущих к качественному звуку, и кроссовер – необходимый элемент любой из них. А если так, то важно ли, будет в кроссовере процессор или нет? Главное, чтобы он сам был.

12 комментариев к статье: Что такое кроссовер?

    У меня пропал звук с левого низкочастотника,средне-,и высоко-частотники работают.Можно ли сказать,что сгорел кроссовер?Или тогда не работала бы вся сторона.Просто контора,которая мне делала систему развалилась,и не хочеться попадать на деньги.Вложил 4 тысячим долларов-продолжать….так лутше застрелиться.Спрашиваю,во избежании обмана у других установщиков.

    • В кроссовере много элементов, как правило это катушки, конденсаторы, резисторы, ничего дорогого и очень уж сложного… Скорее всего отпаялся или окислился какой либо из элементов на плате кроссовера. Думаю ничего серьезного не случилось. Просто снять крышку с кросса и внимательно рассмотреть…

Кроссовер для акустики – это тот элемент, который позволяет отрегулировать звучание динамиков, разделить и выровнять частотные диапазоны. Его можно купить, попросить кого-нибудь поставить, но чаще всего на это тратиться желания не возникает. Уж лучше установить новую акустическую систему полностью, создать самую настоящую звуковую сцену. Это несложно, правда, стоит дорого.

Кроссовер для аккустики

Многим хочется накопить много денег и заняться комплексным тюнингом своей машины. Мечта эта соблазняет, бесспорно. Если появилась возможность, надо действовать. Однако эта мечта редко сбывается. Есть другие потребности. Не до музыки. Пока нужная сумма на все дополнения и трансформации накопится, машина может взять и перестать ездить. Насущные проблемы надо решать своевременно. Если на улице зима – пора менять резину. Если у динамиков разное звучание – пора его откорректировать. Надеяться выиграть миллион, миллиард, триллион похвально. Главное – соответствовать действительности.

Кроссовер для акустики своими руками – это реально или нет? Многие люди утверждают, что собрать его самостоятельно проще, чем кажется. И это намного дешевле, плюс – это интересный процесс. Надо лишь захотеть это сделать, поставить себе цель, вникнуть в суть вопроса, разобраться, объективно оценить свои возможности. На первый взгляд кроссовер для акустики своими руками собрать сложно. Но это лишь на первый взгляд.

Ещё одно препятствие – внешний вид салона не хочется испортить. Как быть: рискнуть выполнить такую работу самостоятельно или отказаться от мечты? Безусловно, это сложный выбор, дилемма. С другой стороны, уж что-что, а внешний вид салона всегда подправят на СТО.

Когда именно нужен данный элемент

Хорошая акустика может не дополняться кроссовером вовсе. Почему? Потому что частотный диапазон поступающего в динамики звука гармоничен. Сами динамики и другие элементы способствуют этому. Тем не менее и хорошая акустическая система, которая дорого стоит, иногда не удовлетворяет своим звучанием. Музыкальный слух – не порок. Стоит ли страдать из-за врождённой биологической особенности? Производитель не обязан ориентироваться на категорию граждан с музыкальным слухом, чуткими рецепторами.

Акустика без кроссовера не функциональна в некоторых случаях. Что это такое: скрипы, посторонние шумы, искажение голоса? Хороший тренажер для слуха и укрепления нервной системы? Позаботиться о себе важно. Производители порой предлагают человеку сделать это самостоятельно.

Музыка – это много звуков, которые обладают разным частотным диапазоном. Какие-то человек слышит, какие-то нет. Одни ему нравятся, другие не нравятся. Приглушать определённые частоты, наоборот, подчёркивать, делать их громкими или совсем незаметными – для этого был изобретён кроссовер. Акустика будет радовать, служить человеку по-настоящему, если добавить этот элемент.

Если с первого раза не получилось

Даже если первая попытка найти нужные материалы, инструменты не увенчается успехом, стоит отложить свою идею на потом, но не прощаться с ней. Это действительно легко – взять и смастерить кроссовер. Поможет в этом схема кроссовера для акустики и фото прибора в деталях. С ней легко разобраться, понять, что это такое в принципе, получить наглядное представление, принять решение, опираясь на факты.

На этих фото чётко видно, что нет в приборе ничего страшного. Он прост, как 5 копеек. Справится и девушка, и мужчина, которые посещали уроки физики в школе, учились старательно. Впрочем, можно купить уже готовый, заводской кроссовер, или доверить тюнинг, модернизацию акустической системы авто профессионалам. Просто это стоит денег.

Виды кроссовера

Какие кроссоверы вообще бывают? Их не так уж и много:

  • активный;
  • пассивный;
  • однополосный;
  • двухполосный;
  • трёхполосный.

Схема каждого из видов будет содержать разные элементы. Пассивный кроссовер состоит из катушек, реле и конденсаторов. Его схема более простая. В нём нет плат, микросхем и сделать его своими руками проще, чем активный. Схема установки также у них разная.

Количество полос определяется количеством полос в акустике, соответствует. Трёхполосные кроссоверы необходимо подключать к трёхполосным акустическим системам. Двухполосная акустическая система и трёхполосные кроссоверы, к примеру, — понятия несовместимые. Так что, если в машине установлена двухполосная акустика, ничего другого не останется, кроме как заменить её или же установить трёхполосные кроссоверы. Двухполосная акустика и однополосные кроссоверы – тоже плохое сочетание. Трёхполосные системы и однополосный кроссовер – аналогично. Здесь властвует правило комплементарности. А вот активный или пассивный кроссовер нужен – можно выбирать, не задумываясь особо.

Пассивный кроссовер заставит систему работает хорошо, хотя есть у него ряд недостатков. Считается, что акустика с пассивным кроссовером работать на все 100% не будет. И это действительно так, ведь активный кроссовер для акустики мощнее. С другой стороны нужны достаточно глубокие познания в области физики, для того чтобы собрать активный кроссовер своими руками.

Кажется, что пришло время выбирать, чего хочется больше: чтобы акустика работала в полную силу или, чтобы звучание было приемлемым. На самом деле это не совсем верно. Даже активный кроссовер реально собрать своими руками, просто сразу может не получиться. Как принято говорить в таких случаях, терпение и труд всё перетрут.

Пассивный кроссовер служит меньше по времени. Так что, стоит задуматься, взвесить все за и против, перед тем, как приступить к работе.

Что такое расчёт кроссовера

Схема кроссовера может всё же заставить отказаться от самостоятельного сбора детали. Но даже схема не заставит отказаться от перспективы самостоятельной установки купленного кроссовера. Это модернизация из категории элементарных. Почему бы и нет? Расчёт кроссовера для акустики – главная проблема. Проще всего воспользоваться калькулятором в режиме онлайн. Расчёт будет довольно-таки верным, хотя есть вероятность погрешностей и результат может не удовлетворить. Автомобильная акустическая система будет издавать всё тот же шум, а не музыку. В чём подвох?

Если попробовать выполнить расчёт без калькулятора, всё станет на свои места. Но не в том смысле, что автомобильная акустическая система начнёт сразу, как по волшебству хорошо работать. Становится понятно, что нужен индивидуальный подход и настройка кроссовера.

О динамиках известно, что у них есть частота, мощность и сопротивление. Значения индивидуальны, зависят от торговой марки, модели. Расчёт кроссовера – это знание сопротивления и частоты. Вот только работает это в теории. На практике человек сталкивается с такой проблемой, как нестабильность значения сопротивления. Сопротивление — это не константа. Меняется частота, меняется и сопротивление. Поэтому нужно знать, хотя бы, в каком диапазоне автомобильная акустическая система работает, среднее арифметическое. Для этого нужны специальные приборы. Иначе никак не узнать эти величины. Ожидания не должны быть завышенными.

Расчет кроссовера для акустики75

Расчет кроссовера для акустики, как известно, очень важная операция. На свете не существует идеальных акустических систем, способных воспроизводить частотный диапазон полностью.
И тогда на помощь приходят отдельные участки спектра динамиков. К примеру, если надо воспроизводить НЧ, применяют сабвуфер, а чтобы воспроизвести ВЧ, устанавливают мидбасы.
Когда все эти динамики вместе взятые начинают играть, то может произойти путаница перед поступлением на тот или иной излучатель. По этой причине и необходим бывает активный или пассивный кроссовер для акустики.
В этой статье мы узнаем, для чего нужен расчет фильтра, рассмотрим пассивные кроссоверы, узнаем как они строятся на катушках индуктивности и конденсаторах.

Расчет кроссовера

Чтобы подключить 2-полосную(см.) или другую акустику с большим количеством полос к 1 каналу усилителя или ГУ, нужно некое отдельное устройство, разделяющее сигнал. При этом оно должно выделять для каждой полосы свои частоты. Именно такие устройства и называются фильтрами или кроссоверами.

Примечание. В комплекте с компонентной акустикой, как правило, уже идет пассивный кроссовер. Его готовил производитель и он рассчитан уже изначально.

Но что делать, если нужно разделить частоты по иной схеме (к примеру, если комплект акустики собран из отдельных компонентов)?
В этом случае речь идет о расчете кроссовера.Отметим сразу, что рассчитать кроссовер совершенно не сложно и даже можно самостоятельно изготовить его.

Ниже приводится инструкция о том, как рассчитать кроссовер:

  • Скачиваем специальную программу. Это может быть Crossover Elements Calculator на компьютер;
  • Вводим сопротивления низкочастотного и высокочастотного динамиков. Сопротивление – это номинальное значение сопротивления акустики, выражаемое в Ом. Как правило, средним значением является 4 Ом;
  • Вводим частоту раздела кроссовера. Здесь полезно будет знать, что частоту надо вводить в Гц, но ни в коем случае не в кГц.

Примечание. Если кроссовер второго порядка, то надо еще ввести тип кроссовера.

  • Получить ожидаемый результат можно, нажав на кнопку расчета.

Кроме того, надо знать следующее:

  • Емкость конденсаторов, а вернее их значение вводится в Фарадах;
  • Индуктивность рассчитывается в Генри (mH).

Схема расчета фильтра выглядит примерно так:

Фильтры разного порядка

Чтобы ясно понимать схему расчета кроссовера(см.), нужно понимать разницу между фильтрами разного порядка. Об этом и пойдет речь ниже.

Примечание. Существуют несколько порядков кроссовера. В данном случае порядок означает параметр кроссовера, который характеризует его способность ослаблять не нужные частотные сигналы.

Первый порядок

Схема 2-х полосного кроссовера этого порядка выглядит следующим образом:

По схеме видно, что ФНЧ или фильтр низких частот построен на катушке индуктивности, а фильтр высоких частот – на конденсаторе.

Примечание. Такой выбор компонентов не случаен, так как сопротивление катушки индуктивности повышается прямо пропорционально увеличению частоты. А вот что касается конденсатора, то здесь обратно пропорционально. Получается, что такая катушка отлично пропускает НЧ, а конденсатор отвечает за пропуск ВЧ. Все просто и оригинально.

Следует также знать, что кроссоверы первого порядка, а вернее их номинал, зависит от выбранной частоты разделения и величины сопротивления колонки. Проектируя ФНЧ, надо в первую очередь обратить внимание на частоту среза НЧ и СЧ динамиков(см.).
А вот проектируя ФВЧ, надо аналогичным образом поступить уже с ВЧ.

Пассивный кроссовер

Наиболее доступной на сегодня считается именно пассивная фильтрация, так как она сравнительно проста в реализации. С другой стороны, не все так просто.
Речь идет о следующих недостатках:

  • Согласовать параметры и значение фильтров с характеристиками излучателей колонок очень сложная штука;
  • В процессе эксплуатации может наблюдаться нестабильность параметров . К примеру, если повысится сопротивление звуковой катушки при нагреве. В связи с этим значительно ухудшится достигнутое в процессе разработки согласование;
  • Фильтр, обладая внутренним сопротивлением, забирает некоторую часть выходной мощности усилителя. Одновременно с этим ухудшается демпфирование, а это сказывается на качестве звучания и четкости передачи нижнего регистра.

Как известно, на сегодняшний день самыми распространенными акустическими системами считаются 2-х компонентные варианты.
В них фильтр разделяет звуковой сигнал на два диапазона:

  • Первый диапазон предназначается исключительно для низких и средних частот. В данном случае используется кроссовер для нижних частот или ФНЧ;
  • Второй диапазон предназначен для ВЧ. Здесь уже используется другой фильтр ФВЧ.

Примечание. Вариантов реализации фильтра может быть несколько, но он все должно отвечать определенным канонам.

Ниже приводится список требований, которым обязательно должен соответствовать кроссовер:

  • Фильтр не должен оказывать влияния на частотный спектр и волну выходящего аудиосигнала;
  • Должен создавать для усилителя, независимую от частоты нагрузку активного характера;
  • Должен суметь обеспечивать вместе с акустическими системами формирование диаграммы направленности. Это должно быть реализовано так, чтобы до слушателя доходило максимум излучения.

Из статьи мы узнали, как проводится расчет кроссовера акустических систем своими руками. В процессе работ будет полезно также изучить схемы, посмотреть видео обзор и фото – материалы.
Если научиться самостоятельно рассчитывать фильтр, платить за услуги специалистам не придется. Таким образом, цена операции сводится к минимуму, ведь надо только приложить немного терпения и уделить некоторое время изучению.

Всем привет,

Чтобы не иметь сложностей с расчётом фильтра СЧ-ВЧ, возможно, представляется правильным, использовать, так называемый фильтр дополнительной функции (ФДФ) – дифференциальный усилитель, вычитающий из широкополосного (музыкального) сигнала тот, что был выделен фильтром низких частот (в нашем случае), а остаток – СЧ и ВЧ составляющие, передающий на свой выход.

Практические схемы кроссоверов с ФДФ подробно описаны в статьях журнала Радио:
1981г №5-6 стр 39 «Трёхполосный усилитель»
1987г №3 стр 35 «Блок фильтров трёхполосного усилителя ЗЧ»

Обратите внимание, в схеме "87/3, перед активным фильтром стоит повторитель напряжения на ОУ, каковой повторитель обладает низким выходным сопротивлением, а нагружен фильтр на ОУ (ФДФ) с высоким входным сопротивлением, что полезно для согласования фильтра со схемой, образующей кроссовер, в целом.

Частоту раздела, для двухполосного кроссовера, лучше выбрать в три раза больше, чем резонансная частота НЧ громкоговорителя. Если в качестве НЧ громкоговорителя используется широкополосный динамик, то раздел лучше провести выше 3,5 КГц (выше резонансной частоты выбранного ВЧ динамика).
Таблица с связывающая частоту раздела при биамплиннге с мощностью, которую нужно подвести к СЧ – ВЧ звену, приведена в Радио 2001 №9 стр. 10

Перед этим кроссовером, хорошо бы поставить ФВЧ с частотой среза 40Гц или менее – отрезать то, что Ваш НЧ динамик не может воспроизвести физически. Подробно об этом рассказано у Аудиокиллера electroclub.info/samodel/sub_pred.htm

Статья по измерению резонансной частоты громкоговорителей и их «Т-С параметров» при помощи звуковой карты компьютера, приведена здесь, на сайте..html

По теме двухполосного звуковоспроизведения (биамплинг), интересно прочитать статью В.Шорова из Радио 1994 №2 «Двухполосное звуковоспроизведение» и, если есть желание разобраться лучше – цикл статей А.Фрунзе «О повышение качества звучания АС» Радио 1992 9 – 12.

Хочу поблагодарить АудиоКиллера за программу для расчёта фильтров третьего порядка.
electroclub.info/mysoft.htm
По выполненным расчётам собрал комбинированный (на одном ОУ) полосовой фильтр 40 – 18000 Гц для УКВ приёмника. При точном подборе конденсаторов и резисторов, АЧХ фильтра совпала с желаемой без дополнительной настройки.

Начинающие, успешно собравшие макет схемы, могут избавить себя от хлопот травления печатных плат, используя НЕфольгированный стеклотекстолит (гетинакс или плотный картон) и тонкий лужёный провод, который заменяет дорожки, которые предполагалось травить. В программе LayOut рисуется печатная плата, с шириной дорожек 0,3 – 05 мм. – чтобы были видны. По распечатке рисунка платы, защищённой прозрачным скотчем, кернится и сверлится текстолит. Потом в отверстия, по порядку сборки, от входа у выходу, вставляются детали, их лужёные выводы отгибаются по направлению отрисованных дорожек и пропаиваются. Если длинны выводов не хватает, используют лужёный провод. Если проводники - «дорожки» лежат близко друг к другу и есть риск замыкания – можно одеть кембрик. Важно, что если потребуется переделка, например, 20% собранной схемы, не нужно срезать печатные дорожки – просто распаять участок, сделать новую сверловку и собрать заново – чисто, просто и технологично, как тротуарная плитка. При сборке ВЧ конструкций, слой фольги, обращённый к деталям, можно использовать как общий экран. Фольгу вокруг отверстий нужно зенковать, кроме «земляных» контактов.
Если интересно, пришлю фотографии плат, сделанных таким способом.