Регулируемый электронный предохранитель переменного тока на микроконтроллере. Электронный предохранитель для переменного тока. Компаратор токовой защиты INA300

(автор Tonich от 6.08.2013г.) не имеет защиты от перегрузки и тока к.з. В недрах Интернета нашлась простая схема защиты - электронный предохранитель. Это устройство подключается между нагрузкой и источником питания.
Вот электрическая схема ЭП.

Контактами Х1 и Х2 устройство подсоединяется к источнику питания. Нагрузка подключается к контактам Х3, Х4. Устройство представляет собой электронный ключ, выполненный на транзисторах VT1 … VT3. Электронный ключ управляется датчиком тока собранном на резисторах R1, R2 и потенциометре R4.

При превышении тока нагрузки, установленного потенциометром R4, падение напряжения на эмиттерном переходе транзистора VT3 приводит к его открыванию и, как следствие, шунтированию эмиттерного перехода VT1. Напряжение на базе VT1 относительно его эмиттера оказывается настолько мало, что VT1 запирается и ток через него не течёт. Вследствие этого цепь VT1-R5 оказывается разорванной, и напряжение на базе VT2 становится ниже порога его срабатывания, транзистор VT2 оказывается закрытым, а нагрузка обесточена. После устранения к.з. (или перегрузки) процессы, начиная с VT3 , происходят в обратном порядке.
Порог срабатывания ключа на транзисторе VT3 устанавливается потенциометром R4. Тем самым определяется максимально допустимый ток, при котором сработает ЭП.
Мощный резистор R3 служит для ограничения тока через VT2. Конденсатор С1 подавляет импульсные помехи (микроискрения), возникающие при скольжении ползунка по резистивному слою потенциометра.

Технические характеристики:
Рабочее напряжение - 5…30В.
Диапазон регулировки тока срабатывания - 0,1…3, 5А.

Компоненты:
R3 - 0,5 Ом, мощный 10 Вт, остальные резисторы мощностью 0,25 Вт.
R1 - 470 Ом.
R2, R6 - 1 кОм.
R5-110 Ом.
R4 - резистор подстроечный - 4,7 кОм.
VT1-VT3 транзисторы BC 547B (KT 3102A)
VT2- транзистор КТ 805АМ, КТ 808АМ, КТ 819ГМ, 2N3055 установить на радиатор площадью не менее 100 кв.см с использованием термопасты.

После сборки подключил ЭП к источнику питания. В качестве нагрузки использовал мощный проволочный резистор сопротивлением 3 Ом. Ползунок потенциометра R4 установил на минимальное сопротивление, подал с нуля напряжение на ЭП. На вольтметре, подключённому к источнику питания - 30 В, на нагрузке ток и напряжение по нулям. Установил ползунок R4 на максимальное сопротивление. При токе 3,8А ЭП сработал. Так как хотелось увеличить ток срабатывания, решил уменьшить сопротивление резистора R3 до 0,3 Ом. Ток срабатывания удалось довести до 6 А. Больше не пытался устанавливать, т.к. транзистор КТ805АМ рассчитан на ток 5А. После срабатывания ЭП повторное включение возможно секунд через 15.
Электронный предохранитель можно выполнить и на мощном полевом транзисторе, но об этом в следующей статье.
Печатная плата в программе Layout 6.0

Вам надоело менять предохранители каждый раз, когда они сгорают? Используйте электронный предохранитель постоянного тока, который будет защищать ваши устройства, подключенные к блоку питания. Этот "предохранитель" может быть восстановлен, просто отключив и снова включив его. Такой предохранитель использует N-канальный FET полевой транзистор как датчик тока. Также транзистор осуществляет отключение линии нагрузки по массе, когда ток превысит максимально допустимое значение.

Схема предохранителя

Печатная плата

Ток отсечки (срабатывания) можно регулировать переменным резистором Р1 от 0 до 5 А. Данная схема может корректно работать с максимальным током нагрузки до 5 ампер. Не перегружайте её, если не хотите сжечь детали. На длительном высоком токе транзистор может становиться горячим, поэтому нужен небольшой радиатор.

Теперь о конденсаторах в базовой цепи - С1 и С2 транзистора Т2. В зависимости от их ёмкости, меняется скорость срабатывания. Например с С1 будет отключаться медленно (пропуская кратковременные пики нагрузки), а С2 мгновенно. При настройке отрегулируйте резистор Р1 до тех пор, пока предохранитель не "перегорит". Сброс предохранителя прост: отключите его питание, и при повторной подаче напряжения схема готова защитить ваши приборы снова. Устройство подходит как приставка для любого источника питания постоянного тока (с переменным схема не заработает) на напряжение выхода до 25 В. При более высоком напряжении потребуется изменить номиналы некоторых резисторов и поставить транзисторы по мощнее.

Схемы источников питания

Во время налаживания или ремонта радиоэлектронной аппаратуры, питающейся непосредственно от электросети, из-за различного рода ошибок может возникнуть короткое замыкание. Для предотвращения повреждения аппаратуры этим явлением следует использовать электронный предохранитель. На рисунке ниже представлена принципиальная схема электронного предохранителя с высоким быстродействием, который рассчитан на ток потребления до 10 А.

При наличии тока в цепи более-10 А устройство автоматически срабатывает и нагрузка, подключенная к разъему Х2, обесточивается. При подключении электронного предохранителя к сети 220 В на его узел управления подается питающее напряжение - 12 В. Ток течет через резистор R6 и светоизлучатель оптрона U1, так как транзистор VT1 и тринистор VS2 закрыты.

В этот момент открывается фотодинистор оптрона и ток начинает течь через него и резистор R3. Напряжение, выпрямленное мостом VD1...VD4, подается на управляющий электрод тринистора VS1. После открытия тринистор VS1 замыкает диагональ моста и открывает путь сетевому напряжению к нагрузке. В момент превышения тока нагрузки или коротком замыкании в ее цепях падение напряжения на резисторе R10 приводит к открытию транзистора VT1 и тринистора VS2. Тринистор своим малым сопротивлением шунтирует цепь питания светоизлучающего оптрона, что приводит к закрытию фотодинистора оптрона и тринистора VS2. В результате происходит обесточивание нагрузки, о чем свидетельствует загорание светодиода HL1. Для включения электронного предохранителя служит кнопка SB1. В момент нажатия кнопки SB1, когда ее контакты замыкаются тринистор VS2 закрывается, но электронный предохранитель еще остается невключенным, так как цепь питания светоизлучающего оптрона зашунтирована. И лишь при отпускании кнопки, когда ее контакты размыкаются, сетевое напряжение подается на нагрузку. Такое построение схемы позволяет не допустить выхода из строя устройства, а также в случае попытки его включения при коротком замыкании.

Для необходимости ручного отключения нагрузки в электронном предохранителе имеется кнопка SB2. В устройстве могут быть использованы следующие радиодетали. Резистор R10 представляет отрезок провода ПЭВ-1 00,6 мм длиной 2 м, который намотан ha корпус мощного резистора. Все остальные резисторы типа MJIT, рассчитанные на мощность, указанную на схеме. Конденсатор С1 типа К73-17, а С2 и СЗ - К50-6. Диоды VD1...VD4, кроме указанных на схеме, могут быть серий Д232, Д233, Д247, КД203, КД206 и другие на U06p.max не менее 400 В. Вместо диодов КД209Б (VD5,VD6, VD8) подойдут диоды серии КД102, а стабилитрона Д814Д (VD7) можно применить- Д814Г, Д813, Д811, КС213 и другие с напряжением стабилизации 10...12 В. Тринистор КУ101 (VS2) использовать с любым буквенным индексом, КУ202 (VS1) - с индексами К...Н. Транзистор VT1 из серии КТ361, КТ209, КТ201, КТ502, КТ501, КТ3107 и подобные. Кнопки SB1 и SB2 типа П2К без фиксации. Тринисторы VS1 и диоды VD1...VD4 следует установить на плоских алюминиевых радиаторах размерами 50x80x5 мм. Основная часть деталей устройства монтируется на печатной плате размером 72x52 мм, вырезанной из одностороннего фольгиро-ванного стеклотекстолита. Плата размещается в корпусе, в котором на лицевой его стороне установлены кнопки SB1 и SB2, светодиод HL1 и розетка XI. Собранный правильно из исправных деталей электронный предохранитель в налаживании не нуждается. Для установки требуемого порога срабатывания устройства необходимо подобрать тринистор VS1 и резистор R10 исходя из того, что Ікз < Icp.max При этом сопротивление резистора R10 определяют из формулы.

Содержание:

Плавкие предохранители являются одноразовыми и требуют обязательной замены в случае их выхода из строя при скачках напряжения. Каждый из них рассчитан на определенный ток, однако при отсутствии подходящего элемента, ставится наиболее близкий по значению. Подобные действия оказывают негативное влияние на работу аппаратуры и снижают ее надежность. Поэтому в современных схемах используются ограничители тока, представляющие собой электронные предохранители. Эти приборы обеспечивают автоматическую защиту и существенно повышают быстродействие устройств.

Эффективность ограничителей тока

Плавкие предохранители использовались практически во всех схемах в течение длительного времени. Они часто выходили из строя и требовали ручной замены. При их отсутствии практиковалось использование самодельных устройств в виде различных перемычек, очень ненадежных и опасных во всех отношениях.

На смену этим простейшим элементам пришли электронные предохранители, исполняющие роль ограничителей тока. По своему действию они разделяются на две основные категории. Первая группа осуществляет восстановление питающей цепи после того как устранены причины аварии. Работа приборов второй группы происходит только с участием специалистов. Кроме того, существуют устройства пассивной защиты, сигнализирующие с помощью звука или света о возникновении опасной ситуации.

В радиоэлектронных устройствах защита от токовых перегрузок осуществляется с использованием резистивных или полупроводниковых датчиков тока, последовательно включаемых в цепь. Если напряжение падает ниже нормативного уровня, происходит срабатывание защитного устройства, отключающего аппаратуру от питающей сети. Данный способ защиты предполагает возможность изменения величины тока, при котором наступает срабатывание защиты.

Хорошую и эффективную защиту обеспечивает ограниченная величина предельного тока, проходящего через нагрузку. Заданный уровень не может быть превышен даже при наличии в цепи короткого замыкания. Ограничение предельного тока выполняется с помощью специальных устройств - генераторов стабильного тока.

Схемы электронных предохранителей

На представленных схемах отображаются наиболее простые автоматические защитные средства от токовых перегрузок. В основе устройства этих приборов лежат , обладающие начальным током, который не может быть превышен. Необходимая величина тока задается путем подбора определенного транзистора.

На схеме 1 используется элемент марки КП302А, указывающий на максимальное значение тока 30-50 мА. Для того чтобы повысить это значение, необходимо включить параллельно сразу несколько транзисторов.

Схема 2 работает с использованием обычных биполярных транзисторов с минимальным коэффициентом передачи тока 80-100. Путь входного напряжения начинается в резисторе R1, далее проходит через транзистор VT1, открывая его. Режим насыщения транзистора способствует уходу большей части напряжения к выходу. Если ток не превышает пороговое значение, в этом случае транзистор VT2 остается закрытым и светодиод HL1 светиться не будет. В схеме 2 резистор R3 является датчиком тока.

В случае падения напряжения транзистор VT1 закроется, ограничивая, таким образом, прохождение тока через нагрузку. Элемент VT2, наоборот, будет открыт, с одновременным включением светодиода. Номиналы элементов, указанных на схеме 2, соответствуют току короткого замыкания с напряжением 0,7 вольт, сопротивлением 3,6 Ом и силой тока 0,2 - 0,23 ампера.

На схеме 3 в электронном предохранителе в качестве ключа используется полевой транзистор VT1 повышенной мощности. Срабатывание защиты происходит при токе, зависящем от соотношения резистивных элементов. Важную роль играет величина сопротивления датчика тока, последовательно включаемого в цепь вместе с полевым транзистором. После того как защита сработала, повторное подключение нагрузки происходит путем нажатия кнопки SA1.

Ограничители тока - стабилизаторы

Стабилизаторы считаются одними из наиболее эффективных ограничителей тока. Например, с помощью устройства на схеме 1 возможно получение на выходе стабильного напряжения, с возможностью регулировки в пределах от 0 до 17 вольт.

От коротких замыканий и превышения тока применяются специальные элементы в виде тиристора VS1 и датчика тока на резисторе R2. Когда в нагрузке увеличивается ток, происходит включение тиристора с одновременным шунтированием цепи управленияVT1. После этого значение выходного напряжения становится равным нулю. Срабатывание защиты подтверждается включением светодиода.

После устранения неисправности повторный запуск стабилизатора происходит путем нажатия на кнопку SB1 и последующей разблокировки тиристора. Существуют ограничители тока, оборудованные защитой и звуковыми индикаторами перегрузок. Для управления генератором звуковой частоты используется специальный ключ на транзисторе.

Современные мощные переключательные транзисторы имеют очень маленькие сопротивления сток-исток в открытом состоянии, это обеспечивает малое падение напряжения при прохождении через эту структуру больших токов. Это обстоятельство позволяет использовать такие транзисторы в электронных предохранителях.

Например, транзистор IRL2505 имеет сопротивление сток-исток, при напряжении исток-затвор 10В, всего 0,008 Ом. При токе 10А на кристалле такого транзистора будет выделяться мощность P=I² R; P = 10 10 0,008 = 0,8Вт. Это говорит о том, что при данном токе транзистор можно устанавливать без применения радиатора. Хотя я всегда стараюсь ставить хотя бы небольшие теплоотводы. Это во многих случаях позволяет защитить транзистор от теплового пробоя при внештатных ситуациях. Этот транзистор применен в схеме защиты описанной в статье « ». При необходимости можно применить радиоэлементы для поверхностного монтажа и сделать устройство виде небольшого модуля. Схема устройства представлена на рисунке 1. Она рассчитывалась на ток до 4А.

Схема электронного предохранителя

В данной схеме в качестве ключа использован полевой транзистор с р каналом IRF4905, имеющий сопротивление в открытом состоянии 0,02 Ом, при напряжении на затворе = 10В.

В принципе этой величиной ограничивается и минимальное напряжение питания данной схемы. При токе стока, равном 10А, на нем будет выделяться мощность 2 Вт, что повлечет за собой необходимость установки небольшого теплоотвода. Максимальное напряжение затвор-исток у этого транзистора равно 20В, поэтому для предотвращения пробоя структуры затвор-исток, в схему введен стабилитрон VD1, в качестве которого можно применить любой стабилитрон с напряжение стабилизации 12 вольт. Если напряжение на входе схемы будет менее 20В, то стабилитрон из схемы можно удалить. В случае установки стабилитрона, возможно, потребуется коррекция величины резистора R8. R8 = (Uпит — Uст)/Iст; Где Uпит – напряжение на входе схемы, Uст – напряжение стабилизации стабилитрона, Iст – ток стабилитрона. Например, Uпит = 35В, Uст = 12В, Iст = 0,005А. R8 = (35-12)/0,005 = 4600 Ом.

Преобразователь ток — напряжения

В качестве датчика тока в схеме применен резистор R2, чтобы уменьшить мощность, выделяющуюся на этом резисторе, его номинал выбран всего в одну сотую Ома. При использовании SMD элементов его можно составить из 10 резисторов по 0,1 Ом типоразмера 1206, имеющих мощность 0,25Вт. Применение датчика тока с таким малым сопротивление повлекло за собой применение усилителя сигнала с этого датчика. В качестве усилителя применен ОУ DA1.1 микросхемы LM358N.

Коэффициент усиления этого усилителя равен (R3 + R4)/R1 = 100. Таким образом, с датчиком тока, имеющим сопротивление 0,01 Ом, коэффициент преобразования данного преобразователя ток – напряжения равен единице, т.е. одному амперу тока нагрузки равно напряжение величиной 1В на выходе 7 DA1.1. Корректировать Кус можно резистором R3. При указанных номиналах резисторов R5 и R6, максимальный ток защиты можно установить в пределах… . Сейчас посчитаем. R5 + R6 = 1 + 10 = 11кОм. Найдем ток, протекающий через этот делитель: I = U/R = 5А/11000Ом = 0,00045А. Отсюда, максимальное напряжение, которое можно выставить на выводе 2 DA1, будет равно U = I x R = 0,00045А x 10000Ом = 4,5 B. Таким образом, максимальный ток защиты будет равен примерно 4,5А.

Компаратор напряжения

На втором ОУ, входящем в состав данной МС, собран компаратор напряжения. На инвертирующий вход этого компаратора подано регулируемое резистором R6 опорное напряжение со стабилизатора DA2. На неинвертирующий вход 3 DA1.2 подается усиленное напряжение с датчика тока. Нагрузкой компаратора служит последовательная цепь, светодиод оптрона и гасящий регулировочный резистор R7. Резистором R7 выставляют ток, проходящий через эту цепь, порядка 15 мА.

Работа схемы

Работает схема следующим образом. Например, при токе нагрузки в 3А, на датчике тока выделится напряжение 0,01 х 3 = 0,03В. На выходе усилителя DA1.1 будет напряжение, равное 0,03В х 100 = 3В. Если в данном случае на входе 2 DA1.2 присутствует опорное напряжение выставленное резистором R6, меньше трех вольт, то на выходе компаратора 1 появится напряжение близкое к напряжению питания ОУ, т.е. пять вольт. В результате засветятся светодиод оптрона. Откроется тиристор оптрона и зашунтирует затвор полевого транзистора с его истоком. Транзистор закроется и отключит нагрузку. Вернуть схему в исходное состояние можно кнопкой SB1 или выключением и повторным включением БП.